The Transformation Tool Soccer Worldcup
The TTC 2014 Live Contest Case

Tassilo Horn Louis Rose Christian Krause
horn@uni-koblenz.de louis.rose@york.ac.uk me@ckrause.org

July 18, 2014

Abstract

This paper describes the TTC 2014’s Live Contest Case. The task is to imple-
ment a soccer client using your favorite transformation tool. The game is network-
based. A provided soccer server awaits two clients and then starts the turn-based
match. In each turn, the clients receive an EMF model representing the current
soccer pitch with all players and the ball. They then need to analyze that model,
and send back to the server an EMF update model describing the actions of their
players.

The TTC soccer world champion will be evaluated by letting the submitted
clients play soccer against each other. There is also an Expert Judges’ Choice
award as perceived by the TTC audience with respect to quality properties such
as understandability, expressiveness of the tool, conciseness, etc., and there is the
overall Live Contest winner where the audience has to balance the match results
with the perceived quality of the solution.

1 Introduction

The Soccer Worldcup in Brazil is over, but we’re still hungry for more matches, so what
could be more obvious than having our own little Transformation Tool Soccer Worldcup?
Participants should use their favorite transformation tool to implement a soccer client
that analyzes a soccer pitch model to emit an update model representing their team’s
actions.

The TTC Soccer World Champion will be determined by letting the participants’
clients play against each other. Next to that, we give an award to the most elegant
solution as perceived by the TTC audience. Here, quality properties such as under-
standability, expressiveness and adequacy of the used tool, conciseness, extensibility, etc.
should be taken into account. Finally, there will be an award for the Overall Live Contest
Winner where the success in the championship has to be balanced with the perceived
quality properties.

In contrast to prior TTC Live Contest cases, this year’s case is very open. There is
no strict right and wrong, but there are many different possible strategies that might or
might not be successful in the competition.

mailto:horn@uni-koblenz.de
mailto:louis.rose@york.ac.uk
mailto:me@ckrause.org

2 Case Description

In this section, the Live Contest case is discussed in detail. The task for participating
teams is to implement a soccer client using their favorite transformation tool. A corre-
sponding soccer server and also a reference soccer client for testing purposes are provided
(see Section [3.1)).

The game is network-based where communication is performed over plain sockets.
The simple protocol is described in Section The soccer server waits for two clients to
connect. The first client to connect will control the blue soccer team, the second client
will control the red soccer team. A coin toss decides whose team’s goal keeper gets the
ball for kickoff initially.

Then, the match starts in a turn-based manner. First the team currently owning the
ball may make its moves, then the other team. Therefore, the server sends a SoccerPitch
model to the client which describes the current state of the soccer pitch (see Section [2.1)).
The client needs to analyze this model, and then send back to the server an Update
model containing the actions of its team’s players (see Section . The server validates
the Update model and updates its soccer pitch model accordingly. The updated pitch is
then sent to the other client so that it can plan its actions.

If a team shoots a goal, all players are reset to their initial positions and the goal
keeper of the non-scoring team receives the ball.

A match consists of 200 turnsﬂ If scores are even after this number of turns, the
team scoring the next goal wins (golden goal).

2.1 The SoccerPitch Metamodel

The Ecore metamodel for the soccer pitch is shown in Figure [T}

A SoccerPitch consists of Fields, Players, and a Ball. The fields are layed out in a grid
of width 45 and height 25. Each field has an xPos and a yPos determining its location
in the grid. Via the references north, south, west and east one can navigate to the field
above, below, left of, and right of. A special kind of fields are GoalFields which belong to
either the BLUE or the RED team. The blue team has 7 adjacent goal fields y-centered
at xPos = 0, and the red team has 7 adjacent goal fields y-centered at xPos = 44.

All players belong to either the BLUE or the RED team and have a number. In each
team, there is a GoalKeeper with number = 1 and eight FieldPlayers with numbers 2 to 9.

Each player references the field he is standing on using the field reference. There may
be multiple players located at the same field. If the player currently has the Ball, he
references it using the ball reference and the field references of the player and the ball
target the same field. It is also possible that currently no player owns the ball.

Figure 2| illustrates an excerpt of a SoccerPitch model (excluding the SoccerPitch root
element).

The top-left field has the coordinates (0, 0), the bottom-right field has the coordinates
(44,24). The blue goal fields have the coordinates {(0,y) | y € [9, 15]}, the red goal fields

1The number of turns in a match may be adapted depending on client speed and number of partici-
pants

H Ball
[0..1] ball
[0..1] ball
& Teams
- BLUE N
- RED [1..1] ball
1..1] figld S R
[0..1] player
[SoccerPitch i L
[0..*] players
[0..*] fields
> Player ‘
[0..1] north E] Field @
[O..l] south £ team : Teams = BLUE
= xPos : Eint =0 = number : Eint = 0
[0..1] west | — yPos:Et=0
[1..1] field [0..*] players %
[0..1] east Fﬁ [‘
| ‘ [Goalkeeper | ‘ [FieldPlayer |

E GoalField

o team : Teams = BLUE

Figure 1: The SoccerPitch metamodel

have the coordinates {(44,y) | y € [9,15]}. So the blue team plays from left to right and
the red team in the other direction.

In the illustration, the blue goal keeper stands on the goal field (0,11), and the red
field player number 4 stands on the field (22,12) and owns the ball.

Figure [3] shows as screenshot of the soccer pitch as rendered by the soccer server.

All players are at their initial kickoff positions, and the ball hasn’t been created and
assigned to some player so far. After each goal, the players are switched back to those
exact positions, and the goal keeper of the non-scoring team receives the ball.

2.2 The Update Metamodel

Figure 4] shows the Update metamodel whose instances are sent from the two clients to
the server. These update models describe the moves of a team’s players for the current
turn.

The root Update element contains a list of Actions. Each action is concerned with
exactly one player identified by the playerNumber. There are two concrete types of actions:
MovePlayer and ShootBall.

A MovePlayer action tells the server to update the position of the team’s player with
number == playerNumber. The target field is specified as xDist and yDist distances relative
to the player’s current field’s xPos and yPos coordinates. Thus, a MovePlayer action with
xDist = 3 and yDist = -2 moves a player standing on field (7, 14) to field (10, 12), e.g., in

:Field :Field

XPos=0 |==== :GoalKeeper | e SO
yPos =0 team = BLUE YPos <0
number =1
E players 5
5 field 5 5 5
f?ﬁfiec')d Field “Field ﬁ?s'F_':T
Pos :11 xPos = 21 west east XPos =22 |==== = i==e= e : 1
et yPos =11 yPos = 11 WHES=
team = BLUE team = RED
5 north north 5
:]
: south south :
:GoalField .) p——
xPos =0 :Field west east :Field B
Pos=12 |~ 77 xPos =21 XPOs =22 |==== immem Pos = 1
et yPos =12 yPos = 12 WHES=
team = BLUE team = RED
] T - :
' i field, ! field '
| s
q ball players)
Field ball :FieldPlayer :Field
s | :Ball ——— team=RED | 77 xPos = 44
yPos =24 player yPos = 24

Figure 2: An sketch of an instance SoccerPitch model

top-right direction.

A ShootBall action tells the server to let the currently ball-owning player with number
== playerNumber shoot the ball in the direction specified by xDist and yDist.

There are several constraints on the Update model like maximum move and shoot
distances. Those are discussed in the next section which also depicts how the soccer
server evaluates the Update model’s actions.

2.3 The Soccer Game Rules
In this section, the constraints on the Update model checked by the server and the
gameplay rules implemented by it are discussed.

2.3.1 Constraints on the Update Model

Next to the structural constraints implied by the metamodel, there are several more
constraints concerning the Update model that are checked by the soccer server and
avenged strictly when disobeyed.

|]
||
]
]
||
|

Figure 3: Rendering of the SoccerPitch model by the server

[Update EE Action
[0..*] actions

= playerNumber : EInt =0
= XDist: EInt=0
= YDist:EInt=0

7

| E MovePlayer | | E ShootBall |

Figure 4: The Update metamodel

. There may be at most one action per player and per turn. If the second action
of a player is encountered, that action is skipped and the player gets a red card
meaning the player is removed from the soccer pitch.

. The player owning the ball can move at most 2 fields in both z and y direction.
Violation of this rule is avenged with a red card.

. A player without ball can move at most 3 fields in both = and y direction. Violation
of this rule is avenged with a red card.

. A goal keeper can only move on his own team’s goal fields. If he tries moving out
of his goal, he receives a red card.

5. Moving a player off the soccer pitch is avenged with a red card.

6. A shot can move the ball at most 7 fields in both x and y direction. Violation of
this rule is avenged with a red card.

7. There may be at most 4 shoot ball actions in an Update model. The players trying
to perform the fifth and later shots receive a red card. Since four shots are allowed,
complex multi-passes are still possible, but it’s not possible to cross the complete
pitch in a single turn.

8. A shoot ball action for a player not owning the ball is simply skipped without
penalty. The reason is that when performing a multi-pass, e.g., player 1 shoots the
ball to player 2, and that player immediately shoots to player 3, the client cannot
know that the first pass actually arrives at player 2. There is a chance that some
opponent player intercepts the pass (see the gameplay rules below).

9. Shooting the ball off the soccer pitch is avenged with a red card for the shooting
player.

2.3.2 Gameplay Rules

The gameplay rules define how the soccer server evaluates the move player and shoot
ball actions sent by the soccer clients.

MovePlayer When the soccer server evaluates a move player action, it first checks the
constraints 2 to 5 listed above and acts accordingly. If the player owns the ball, he
is moved to the target field specified by xDist and yDist. If there is an opponent
player within a distance less than one from the line of the move, there is a 30%
chance that this player intercepts the ball. If not, the ball is placed at the target
field and the original player still owns it. If the target field is one of the opponent’s
goal fields, the CheckGoal rule is performed.

If the player of a move action doesn’t own the ball, the constraints are checked in
the same way and the player is placed at the target field. If the target field contains
the ball but no other players, the current player captures the ball. If the target
field contains the ball-owning opponent player and that is not the goal keeper, the
opponent is attacked and there is a 50% chance that the current player captures
the ball.

ShootBall When the soccer server evaluates a shoot ball action, the constraints 6 to 9
are checked first. Then the target location of the shot is computed as specified with
the xDist and yDist attributes. If there is an opponent player within a distance less
than one from the line of the shot, there is a 30% chance that this player intercepts
the ball. If not, the ball is placed on the target field. If the target field is one of
the opponent’s goal fields, the CheckGoal rule is performed. If the target is no goal
field but other players are located there, a random choice decides which of them
receives the ball.

CheckGoal If the ball finds its way to an opponent goal field as a result of a move or a
shot and neither the opponent’s goal keeper nor one of the opponent’s field players
is located there, the action’s player scores a goal for his team. If the goal keeper
is on the target field, he has a 70% chance of catching the ball. Opponent field
players on the target field have a 20% chance of capturing the ball each.

2.4 The Soccer Protocol

The protocol between client and server is socket-based and very simplistic. It is illustrated
in Figure [5

Server Client
{listening} I
| I
[<- = - = - - - {connect} - - - - - - - - |
I I
| ~<TEAM> - — — = e e e e e e e > |
[<=mm e <NAME>- |
| I
| {repeatedly} |
o - +
| |-<SR><SoccerPitch><ER>-------—-oooo—- >| |
| <= - <SR><Update><ER>-| |
gy +
I I
[- - - - - - - - {close} - - - - - - - - >

Figure 5: The Soccer Protocol

The server listens on some port awaiting two clients. When a client connects, the
server sends it the TEAM that client will control. The first client’s team is BLUE, the
second client’s team is RED.

As response, the client sends its NAME to the server. Preferably, solutions should use
the name of the transformation tool they are using as the name of their client.

As soon as two clients have connected and TEAM and NAME have been exchanged,
the actual match starts. The ball-owning team’s client receives a SoccerPitch model
and sends an Update model as a response. Then the other team’s client receives the
updated SoccerPitch model and sends its Update model. This cycle repeats until the
match winner stands firm, i.e., after 200 or more turns depending if a golden goal is
needed to determine the winner.

The models are send as EMF XMIResources and wrapped in a start marker SR and an
end marker ER whose values are #START_RESOURCE# and #END_RESOURCE#. Section [3.3
provides sample Java methods that can be used to send and receive the models as required
by the protocol.

After the match finished, the server simply closes the client sockets.

1
2

1
2
3
4
5
6
7
8

9
10
11

3 Additional Information

3.1 Artifacts

You can download the two Ecore metamodels and the soccer server from the following
http://www.transformation-tool-contest.eu/livecontest.html.

There is also a soccer client implemented with FunnyQTﬂ which you can compete
with while developing your own solution.

3.2 Discussions about the Case

When you have questions concerning the case, you can ask me (Tassilo Horn) personally.
I'll be around the STAF conference the complete week.

There is also a mailing list (Google Group) for posting questions about the case
or discussing it. The list address is [ttcl4-live-contest@googlegroups.com, and it can
also be used via the web interface at https://groups.google.com/forum/#!forum/
ttcl4-live-contest!

3.3 Sending and Receiving Models

As discussed in Section the SoccerPitch model and the Update model are sent and
received as XMIResources, i.e, in their XMI representation, via the connection socket’s
input and output streams. They are wrapped in some start and end marker strings as
given in Listing [I]

public static final String START_MARKER = "#START_RESOURCE#";
public static final String END_MARKER = "#END_RESOURCE#";

Listing 1: Markers for wrapping resources

The method for sending an XMIResource is shown in Listing [2}

private void sendResource(XMIResource r) {
// socket is the Socket connected to the Server
// out is new PrintWriter(new OutputStreamhriter(socket.getOutputStream()));
out.println(START_MARKER) ;
try {
Map<Object, Object> opts = r.getDefaultSaveOptions();
opts.put (XMLResource.OPTION_FORMATTED, false);
r.save(out, opts);
} catch (IOException e) {
e.printStackTrace();
throw new RuntimeException(e);
}
out.println(END_MARKER) ;
out.flush();
}

Listing 2: Sending an XMIResource

2FunnyQT homepage: http://jgralab.github.io/funnyqt/

http://www.transformation-tool-contest.eu/livecontest.html
mailto:ttc14-live-contest@googlegroups.com
https://groups.google.com/forum/#!forum/ttc14-live-contest
https://groups.google.com/forum/#!forum/ttc14-live-contest
http://jgralab.github.io/funnyqt/

WO U WN =

The method for receiving an XMIResource is shown in Listing

private XMIResource receiveResource() {
// socket is the Socket connected to the Server
// in is new BufferedReader(new InputStreamReader(socket.getInputStream()));
try {
String s = in.readLine();
if (s == null) {
throw new RuntimeException("Connection lost.");
}
if (!'s.equals(START_MARKER)) {
throw new RuntimeException("Bad message from server.");
}
StringBuilder sb = new StringBuilder();
while (!(s = in.readLine()).equals(END_MARKER)) {
sb.append(s) ;
}
s = sb.toString();
XMIResource r = new XMIResourceImpl();
r.load(new ByteArrayInputStream(s.getBytes()), r.getDefaultLoadOptions());
return r;
} catch (IOException e) {
e.printStackTrace();
throw new RuntimeException(e);
}
}

Listing 3: Receiving an XMIResource

3.4 Running the Soccer Server

The soccer server is distributed as a runnable JAR (see Section above). Running it
without arguments prints its synopsis:

% java -jar SoccerServer.jar
Usage:

java -jar SoccerServer.jar <PORT> <TURNS> <SLEEP_TIME>

<PORT> The port the server listens on for clients.
<TURNS> The number of turns in a match.
<SLEEP_TIME> The pause time (in ms) between player actions.

When the soccer server is started, an new soccer pitch with all players at their initial positions is
created and displayed with a simple GUI. The server then waits for two clients to connect by listening
on the port specified by the argument PORT.

When two clients have connected, a coint toss determines whose team’s goal keeper receives the ball
and kicks off. Then the game starts for at least as many turns as specified by the TURNS argument.

The SLEEP_TIME argument slows down the game so that each player’s action in a turn can be
observed better in the server’s GUIL

3.5 Running the Reference Client
Like the soccer server, the reference soccer client is distributed as a runnable JAR file (see Section

above). Executing it without arguments prints its synopsis:

% java -jar ttcl4-soccer-client.jar
Loading soccerpitch model...

Loading update model...
Usage:
java -jar ttcl4-soccer-client.jar <host> <port>

The host argument specifies the host name or IP address of the machine running the soccer server.
The port argument specifies the port the soccer server is listening on.

3.6 Solution Submission

The soccer clients should be submitted until Thursday, July 24th, 12pm (i.e., noon, time for
lunch). To submit your client, you should commit and push it to the Git repository at https://
github.com/TransformationToolContest/ttcl4-1live-contest-solutions. Please follow the instruc-
tions given at that site. Most importantly, the solution must be runnable in order to participate in the
TTC Soccer Worldcup, and it must be documented how to do so.

10

https://github.com/TransformationToolContest/ttc14-live-contest-solutions
https://github.com/TransformationToolContest/ttc14-live-contest-solutions

	Introduction
	Case Description
	The SoccerPitch Metamodel
	The Update Metamodel
	The Soccer Game Rules
	Constraints on the Update Model
	Gameplay Rules

	The Soccer Protocol

	Additional Information
	Artifacts
	Discussions about the Case
	Sending and Receiving Models
	Running the Soccer Server
	Running the Reference Client
	Solution Submission

