
TTC’2015 Case: Refactoring Java Programs using Spoon

Gérard Paligot
gerard.paligot@inria.fr

Inria

Nicolas Petitprez
nicolas.petitprez@inria.fr

Inria

Martin Monperrus
martin.monperrus@univ-lille1.fr

University of Lille

Abstract
TTC’2015 is the 8th Transformation Tool Contest for users and developers of transforma-

tion tools. In this paper, we present the use of Spoon, an open-source library to transform
and analyze Java source code for the code refactoring track of TTC’2015. We use Spoon to
implement pull-up-method and create super-class refactorings. The implementation uses an
unmodified revision of Spoon and is done in 125 lines.

1 Introduction
Spoon[7] is an open-source library that enables you to transform and analyze Java source code.
Spoon provides a complete and fine-grained Java metamodel where any program element (classes,
methods, fields, statements, expressions. . .) can be accessed both for reading and modification.
Spoon takes as input source code and produces transformed source code ready to be compiled.

For now, Spoon has been used in many different contexts: program analysis and transformation
in Java[6], automatic repair of buggy if conditions[4] or fault injection [3] but nobody has ever
studied the use of Spoon for refactoring Java programs. To explore this new usage of Spoon, we
have implemented the two types of refactoring asked by Transformation Tool Contest 2015 [2].

Our solution is publicly available on Github:
https://github.com/GerardPaligot/ttc-competition/

The paper reads as follows. Section 2 gives a description of the chosen case study. Section 3
present the chosen solution. Section 4 explains how we validate our solution. Section 5 give some
discussions of design decisions and perspectives for our work. Section 6 concludes this paper.

2 Background

2.1 Case study
The chosen case study is "Object-oriented Refactoring of Java Programs using Graph Transfor-
mation" [5], it proposes two object-oriented program refactorings. It consists of implementing two
refactorings, namely pull-up-method and create super-class.

First, we explain how pull-up-method works. Before the refactoring, the Java code must have
methods with identical signatures (name and parameters) and equivalent behaviors. These methods
are then moved to the superclass. After the refactoring, the method is a member of the superclass
and deleted from the subclasses. This operation is depicted in Figure 1.

We consider the following conditions to apply the pull-up-method refactoring:

1. Each child class of class ParentClass has at least one common method signature with the
corresponding method definitions having equivalent functionality [5].

1

https://github.com/GerardPaligot/ttc-competition/

Figure 1: Illustration of a Pull-up-method

Figure 2: Illustration of a Create a super class

2. Each method in the child classes only accesses methods and fields accessible from ParentClass.

3. The ParentClass does not belong to a library and is editable. [5]

Second, we explains how the create super-class refactoring works. This kind of refactoring is
useful when we have a set of classes with similar features. As a first step towards an improved
program structure, a new common superclass of these classes is created. When we have subclasses
with a parent class, it creates a new parent class and this new class extend the old one (the previous
parent). This operation is depicted in the Figure 2.

In this case, we have one precondition: the classes are extending the same superclass. The
precondition is always met is the default case since classes with no explicit inheritance in Java are
all implementing java.lang.Object. [5]

This refactoring has the following post-conditions:

1. Each class has an inheritance to the new super class [5].

2. When the classes had an explicit inheritance relation to a superclass before the refactoring,
their new superclass has an inheritance reference to the old super class [5].

2

Figure 3: Transformation chain of the study case

2.2 Spoon
Spoon provides a Java abstract syntax tree (AST) designed to be understandable by developers.
With this AST, developers can analyze or transform the source code. In our solution, we use two
concepts of Spoon: Factory and Query.

Factory creates new elements or retrieves some specific elements.For instance, the factory is
used to create the new super class for the create super-class refactoring.

Query makes complex queries on a AST. If you would like to retrieve all methods, fields, class
or any elements of the meta-model, you execute a query to get them. This concept is used to
retrieve all methods concerned by the pull-up-method refactoring.

2.3 Test infrastructure
ARTE is a Java program which executes test cases specified in a Domain Specific Language (DSL)
for validating the solutions of the OO Refactoring Case Study of the Transformation Tool Contest
2015. A test case comprises a sequence of refactoring operations on a Java program as well as
the expected results. The tests aim at checking the correct analysis of pre- and postconditions for
refactorings and the execution of these refactorings [5].

This test framework defines specific command line arguments. When you execute the jar file,
you launch a custom terminal where you execute these commands. From this terminal, you load
your solution and execute the ARTE tests. If you execute all tests, it executes public tests and
hidden tests. Input source code and assertions are public for public tests but only input sources
are public for the hidden tests.

We give an overview of the transformation chain in Figure 3. First, we see than ARTE loads
sources and gives them to our solution based on Spoon. Second, our implementation refactors the
Fava source code given to print sources refactored. Third, ARTE uses sources refactored by our
solution to check assertions on our results.

3 Presentation of the Solution

3.1 Pull-up-method
Algorithm 1 shows the pseudo-code of our implementation. In input, we have the method to be
refactored and the superclass element where we should put the refactor method. These objects are
given as parameter of the refactoring method. As output, a boolean tells whether the refactoring
is done or not. Let’s explain this algorithm step by step:

1. We check that the superclass given as parameter exists. If it doesn’t exist, we are not allowed
to pull up the method. The refactoring fails.

3

2. We retrieve all methods candidates for the refactoring with the same name and type param-
eters and we store them in a list named candidates.

3. For each candidate, we check that the superclass of the declaring class of the current candidate
method exists. If this superclass doesn’t exist, the refactoring fail.

4. For each candidate, we check that the body of the current candidate method does not try to
access fields of the declaring class. If it tries, the refactoring fails.

5. For each candidate, we check that the body of the current candidate method does not try to
access methods of the declaring class. If it tries, the refactoring fails.

6. We retrieve all subclasses of the superclass and for each subclass, we check that the method
exists in it. If not, the refactoring fails.

7. When all previous conditions are passed, we apply the refactoring. For each candidate, we
remove it from the declaring class and we set the method asked in the superclass.

Data: superclass element and method element
Result: true if the refactoring is done
if superclass doesn’t exist then

fail
end
candidates ← all methods candidates for refactoring;
foreach candidate in candidates do

if superclass of candidate doesn’t exist then
fail

end
if body of candidate try to access fields of declaring class then

fail
end
if body of candidate try to access methods of declaring class then

fail
end

end
foreach subclass in subClasses of superclass do

if method to refactor isn’t present in subclass then
fail

end
end
foreach candidate in candidates do

Removes candidate method from declaring class;
end
Adds method in superclass;

Algorithm 1: Pull up methods in their superclass

3.2 Create super-class
Algorithm 2 shows the pseudo-code of our implementation of create super-class. As input, we have
a set of children and a superclass element. These objects are given as parameter of the refactoring
method. As output, a boolean tells whether the refactoring is done or not. Let’s explain this
algorithm step by step:

1. We check that the superclass does not already exist. If yes, the refactoring fails because we
are not allowed to create a superclass on an existing class.

2. We create the new superclass from the superclass.

4

pub pum2 1 0,063 seconds
pub pum1 1 paper1 0,018 seconds
pub pum1 2 0,002 seconds
pub csc1 1 0,136 seconds
pub csc1 2 0,002 seconds
pub pum3 1 0,005 seconds
hidden csc1 1 0,003 seconds
hidden csc1 2 0,002 seconds
hidden pum1 1 0,003 seconds
hidden pum1 2 0,003 seconds
hidden csc2 1 0,003 seconds
hidden pum2 1 0,005 seconds
hidden pum2 2 0,003 seconds
hidden csc3 1a 0,009 seconds
hidden csc3 1 0,004 seconds

Table 1: Execution time measurements

3. We collect all super-classes of children and we check that there are all the same superclass.
If yes, new superclass extends this superclass. Otherwise, the refactoring fails.

4. For each child in set of children, we set its superclass with the new superclass.

Data: set of children and superclass element
Result: true if the refactoring is done
if superclass already exists then

fail
end
Create newsuperclass from superclass;
Set superclass of newsuperclass from superclasses of children;
foreach child in children do

Set superclass of child with newsuperclass;
end

Algorithm 2: Creates and sets the new superclass for all children

3.3 Execution time measurements
When we execute a test in ARTE, we see in output the name of the test case, the executed
refactoring, results of assertions and the execution time. Table 1 shows execution time measured
by ARTE when we execute all tests (execution time measurements are different when we execute
one by one).

We see that the performances are good. The worst execution time is the test case pub csc1 1.
This test case applies the refactoring create super-class on an example with two child class and a
super class for these subclasses.

3.4 Architecture
Our solution is available on Github [1]. It is a Maven project in Java 8 with only one "compile"
dependency: spoon. The solution has 2 "provided" dependencies: TTCTestInterface and EMF.
TTCTestInterface is a Jar file given by the case study and versioned in the project. We have
created a local maven repository in the project to save all versions of TTCTestInterface jar file
updated by organizers. TTCTestInterface contains an interface which returns objects with EMF
objects, like EList. To manipulate objects like EList, we need the EMF dependency. Finally,
there are 2 "test" dependencies: junit and mockito which are used to test our solution.

5

We generate the solution in a jar file with the maven command:

$ mvn c l ean assembly : assembly

This command compiles the project, launches all Junit test cases and builds the final jar file
with dependencies in the target directory of the project. After that, this jar file is used on ARTE
to launch all tests of this last tool. According to our experience, it isn’t possible to integrate ARTE
in the maven process because ARTE must be launched as command line.

All Junit tests are available in the folder src/test/java and correspond to public and hidden
test cases given by organizers executed in ARTE. All Java source code used by ARTE has been
copied in src/test/java/resources and used by test cases in src/test/java/fr/inria. So,
when we compile the project with the command line given in the next section, we execute the
same tests than the tests executed in ARTE.

The implementation asked of TTCTestInterface is SpoonTtc. This class retrieves the Java
source code in the method createProgramGraph and builds the Spoon AST. This AST is used on
methods to apply refactorings with 2 stages: First, refactoring methods check whether we must
apply the refactoring. Second, refactoring methods apply the refactoring on the Spoon AST. The
Java source code refactored is printed in the method synchronizeChanges in the source directory
of the original Java program.

4 Validation
For pull-up-method, it has 9 tests corresponding to the ARTE public. There is on parameterized
test class to launch 6 tests on all examples available in resources. For create super-class, it has 6
tests corresponding to the ARTE public and hidden tests and has a test class parameterized to
launch 6 tests on examples.

For each test case, we make some assertions on the Spoon AST and the boolean result of the
refactoring method. We make pre-conditions to know if the Spoon AST is in a correct state. We
check that the refactoring method returns the expected boolean value. Finally, we make post-
condition on the Spoon AST to know if the refactoring is applied or not, according to the boolean
result of the refactoring method.

When we call refactoring methods, its parameters has a dependency to EMF. So, we add
the mockito dependency to simulate these objects and test our implementation in a controlled
environment. We build mocked objects and we add them in parameter of refactoring methods. For
example, Listing 1 shows a mocked object given at the method applyPullUpMethod.

Listing 1 Test case for the pull-up-method

@Test
pub l i c void testPullUpMethod11 () throws Exception {

spoonTtc . createProgramGraph (" . / s r c / t e s t / r e s ou r c e s /paper−example01 /") ;
// Pre−a s s e r t s on the Spoon AST.
asse r tTrue (spoonTtc . applyPullUpMethod (

getPullUpRefactoringMocked (
"example01 . ParentClass " , " foo " , " java . lang . S t r ing " , " i n t "))) ;

// Post−a s s e r t s on the Spoon AST.
}

This example calls the method applyPullUpMethod to apply the refactoring of the same name.
As parameter, we give the mocked object. To build this last object, we give the super class
where the method will be pulled up and the method concerned by the refactoring with type of its
parameters. In this case, the refactoring is possible so we check than the result is true.

6

5 Discussions
To our opinion, Spoon was well suited for this case study. Its understandable AST and its capability
to transform Java programs were appropriate. We realized the refactorings quickly and within a
few lines. Implementing the refactoring case study with Spoon took 80 lines for pull-up-method
and 21 lines for create super-class.

Spoon has no module to refactor Java source code. This case study was a great opportunity
for us to start such a module. All contributions here will be integrated in Spoon in a next release
and will be improved with some new refactorings in the future.

6 Conclusion
We have presented a solution for the for this edition of Transformation Tool Contest based on
Spoon. It has validated the idea of using Spoon for implementing refactorings of Java source code.

References
[1] GitHub repository of our submission. https://github.com/GerardPaligot/

ttc-competition/tree/master/lib/fr/inria/TTCTestInterface/.

[2] Transformation Tool Contest 2015. http://www.transformation-tool-contest.eu/.

[3] Benoit Cornu, Lionel Seinturier, and Martin Monperrus. Exception handling analysis and
transformation using fault injection: Study of resilience against unanticipated exceptions. In-
formation and Software Technology, 57(0):66 – 76, 2015.

[4] Favio Demarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. Automatic Repair of
Buggy If Conditions and Missing Preconditions with SMT. In CSTVA’2014, Hyderabad, India,
2014.

[5] Sven Peldszus Géza Kulcsàr and Malte Lochau. Case Study: Object-oriented Refactoring of
Java Programs using Graph Transformation. 2015.

[6] Renaud Pawlak, Carlos Noguera, and Nicolas Petitprez. Spoon: Program Analysis and Trans-
formation in Java. Research Report RR-5901, Inria, 2006.

[7] Spoon. Spoon project on GitHub. https://github.com/INRIA/spoon.

7

https://github.com/GerardPaligot/ttc-competition/tree/master/lib/fr/inria/TTCTestInterface/
https://github.com/GerardPaligot/ttc-competition/tree/master/lib/fr/inria/TTCTestInterface/
http://www.transformation-tool-contest.eu/
https://github.com/INRIA/spoon

	Introduction
	Background
	Case study
	Spoon
	Test infrastructure

	Presentation of the Solution
	Pull-up-method
	Create super-class
	Execution time measurements
	Architecture

	Validation
	Discussions
	Conclusion

