
To appear in EPTCS.

Solving the Class Responsibility Assignment Case with
UML-RSDS

K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani
Dept. of Informatics, King’s College London, Strand, London, UK

This paper provides a solution to the class responsibility assignment case using UML-RSDS. We
show how search-based software engineering techniques can be combined with traditional MT tech-
niques to handle large search spaces.

Keywords: Class responsibility assignment; Search-based software engineering; UML-RSDS.

1 Introduction

This case study [2] is an endogenous transformation which aims to optimally assign attributes and meth-
ods to classes to improve a measure, CRA, of class diagram quality. We provide a specification of the
transformation in the UML-RSDS language [3, 4] using search-based software engineering techniques
(SBSE).

UML-RSDS is a model-based development language and toolset, which specifies systems in a platform-
independent manner, and provides automated code generation from these specifications to executable
implementations (in Java, C# and C++). Tools for analysis and verification are also provided. Specifica-
tions are expressed using the UML 2 standard language: class diagrams define data, use cases define the
top-level services or functions of the system, and operations can be used to define detailed functionality.
Expressions, constraints, pre and postconditions and invariants all use the standard OCL 2.4 notation of
UML 2.

For model transformations, the class diagram expresses the metamodels of the source and target
models, and auxiliary data and functionalities can also be defined. Use cases define the transformations
and their subtransformations: each use case has a set of pre and postconditions which define its intended
functionality. A use case can include others, and may have an activity to define its detailed behaviour.

2 Class responsibility assignment

In our solution, we combine the SBSE technique of generic algorithms with a traditional endogenous
model transformation. This is a particular case of a general strategy used in UML-RSDS to combine
SBSE and MT (Figure 1), where transformations are used to pre- and post-process the input data and
results of an evolutionary algorithm. We have selected a genetic algorithm (GA) for SBSE because the
CRA problem is akin to scheduling and bin-packing problems, for which genetic algorithms have proved
widely successful. We observed that the problem seems to satisfy the property of possessing ‘building
blocks’ – in this case groups consisting of a method plus a group of attributes which it depends upon and
no other method does. Such groups must always be placed in the same class and hence form a higher
granularity unit (compared to individual features) from which potential solutions can be composed.

The first part of the solution is an endogenous transformation (Figure 2) which (i) identifies the build-
ing blocks and places these in separate classes: the createClasses transformation in Figure 2; (ii) refactors



2 CRA Case with UML-RSDS

Figure 1: Integration of model transformations and SBSE

the class model to reduce coupling: the refactor transformation; (iii) removes empty classes: the cleanup
transformation. Finally, the measures transformation displays the CRA-index and other measures of the
intermediate solution. These transformations are co-ordinated by the preprocess transformation.

Figure 2: Pre-transformation (based on architectureCRA.ecore)

The rules for createClasses are as follows:
UMLMethod::

dataDependency.size = 0 & functionalDependency.size = 0 =>

UMLClass->exists( c | c.name = "Class0" & self : c.encapsulates )

Attribute::

UMLMethod->select( f | self : f.dataDependency )->size() = 0 =>

UMLClass->exists( c | c.name = "Class0" & self : c.encapsulates )

UMLMethod::

dataDependency.size > 0 & c : UMLClass &

dataDependency <: c.encapsulates@pre => self : c.encapsulates



K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani 3

UMLMethod::

isEncapsulatedBy.size = 0 &

unencapdas = dataDependency->select( d | d.isEncapsulatedBy.size = 0 ) &

UMLMethod->forAll( m | m.isEncapsulatedBy.size = 0 =>

m.dataDependency->select( a | a.isEncapsulatedBy.size = 0 )->size() <=

unencapdas.size ) =>

UMLClass->exists( c | c.name = "Class" + ( UMLClass@pre.size + 1 ) &

self : c.encapsulates & unencapdas <: c.encapsulates )

UMLMethod::

c : UMLClass & dataDependency <: c.encapsulates@pre &

functionalDependency.size > 0 &

functionalDependency <: c.encapsulates@pre => self : c.encapsulates

The first two rules locate all isolated features in a single class, Class0. The subsequent rules create classes
for each ‘chunk’ of a method plus the attributes which are exclusively or primarily depended on by that
method (Rule 4). Rules 3 and 5 enforce invariants which any reasonable class model should satisfy.

The refactor transformation moves methods m and attributes a from one class self to an alternative
class c, if there are more dependencies linking the feature to c than to self :
UMLClass::

m : encapsulates@pre & m->oclIsKindOf(UMLMethod) & c : UMLClass &

depends = m.dataDependency->union(m.functionalDependency) &

depends->intersection(c.encapsulates@pre)->size() >

depends->intersection(encapsulates@pre)->size() => m : c.encapsulates

UMLClass::

a : encapsulates@pre & a->oclIsKindOf(Attribute) & c : UMLClass &

dependings = UMLMethod->select( f | f.dataDependency->includes(a) ) &

dependings->intersection(c.encapsulates@pre)->size() >

dependings->intersection(encapsulates@pre)->size() => a : c.encapsulates

Although this transformation may decrease the CRA-index, it generally reduces coupling.
Finally, cleanup deletes empty classes:

UMLClass::

encapsulates.size = 0 => self->isDeleted()

The preprocess transformation co-ordinates the other transformations. It has no rules of its own, but
it has an activity to control the subordinate transformations, which preprocess accesses via ≪ include ≫
dependencies:
while Feature->exists(isEncapsulatedBy.size = 0)

do execute ( createClasses() ) ;

while UMLClass->exists( c | c.name /= "Class0" & c.encapsulates.size = 1 )

do execute ( refactor() ) ;

execute ( cleanup() ) ;

execute ( measures() )

createClasses is iterated until all features are encapsulated in some class, then refactor is iterated until
all normal classes have at least 2 features.

3 Genetic algorithm

A general GA specification is provided in the UML-RSDS libraries (Figure 3). This can be reused and
adapted for specific problems, by providing a problem-specific definition of the fitness function, the



4 CRA Case with UML-RSDS

content of GATrait items and values, and the functions determining which individuals survive, reproduce
or mutate from one generation to the next.

Figure 3: Genetic algorithm structure

The general definitions of evolve and nextgeneration are as follows:

Use Case, name: evolve

GeneticAlgorithm::

p : population@pre & GeneticAlgorithm.isUnfit(p) => p->isDeleted()

GeneticAlgorithm::

p : population & GeneticAlgorithm.isElite(p) => p : elite

GeneticAlgorithm::

p : elite & q : population &

q.fitnessval < p.fitnessval & GeneticAlgorithm.isCombinable(p,q) =>

p.combine(q) : recombined

GeneticAlgorithm::

p : population & GeneticAlgorithm.isMutatable(p) => p.mutate() : mutated

Use Case, name: nextgeneration

GeneticAlgorithm::

true =>

population = elite@pre->union(recombined@pre)->union(mutated@pre)

GeneticAlgorithm::

true =>

elite = Set{} & recombined = Set{} & mutated = Set{}

GeneticAlgorithm::

p : population => p.fitnessval = p.fitness()

GeneticAlgorithm::

population@pre.size > 500 & p : population@pre =>

population@pre->select( q | q /= p & q.fitnessval = p.fitnessval )->isDeleted()



K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani 5

GeneticAlgorithm::

population.size > 0 =>

GeneticAlgorithm.maxfitness = population->collect(fitnessval)->max()

Mutation consists of incrementing or decrementing the value of a randomly selected trait. Crossover
takes place at a randomly-selected trait position.

To model the CRA problem in a GA, individuals represent possible assignments of features to classes,
and have traits for each feature in the model, and item is the name of the feature. The trait value is the
index number of the class to which the feature is assigned, ie.:

Feature[item].isEncapsulatedBy→includes(UMLClass.allInstances→at(value))

E[str] is the instance of entity type E with primary key value str. The fitness value is the CRA-index,
computed using the definitions of [2]. The functions dma and dmm are cached to avoid repeated execution
on the same inputs.

The ga(iter : int) use case performs initialise to initialise the population with 3 copies of the model
produced by preprocess, and 3 random individuals, then it iterates evolve and nextgeneration for iter
times. Given a class model, a GeneticAlgorithm and GAIndividuals are generated by the rules:

ClassModel::

nclasses = UMLClass.allInstances.size =>

GeneticAlgorithm->exists( ga | ga.maxvalue = nclasses )

GeneticAlgorithm::

true => GAIndividual->exists( g |

Feature->forAll( f | GATrait->exists( t | t.item = f.name &

t.value = ( Math.random() * GeneticAlgorithm.maxvalue )->floor() + 1 &

t : g.traits ) ) &

g : population )

GeneticAlgorithm::

true => GAIndividual->exists( g |

Feature->forAll( f | GATrait->exists( t | t.item = f.name &

t.value = UMLClass.allInstances->indexOf(f.isEncapsulatedBy.any) &

t : g.traits ) ) &

g : population )

In a final phase, an optimal individual produced by the genetic algorithm is mapped to a class model
by the postprocess use case:

GeneticAlgorithm::

population.size > 0 & g = population->selectMaximals(fitnessval)->any() =>

g.traits->forAll( t | UMLClass.allInstances->at(t.value) : Feature[t.item].isEncapsulatedBy )

Following this, cleanup may be needed to remove any empty classes.

4 Results

Table 1 gives some typical results for the five example models. We show the execution times for
preprocess, ga and postprocess separately. For test A, createClasses results in 4 classes, with 3, 2, 2
and 2 features respectively, cohesion ratio 4 and coupling ratio 1. Applying refactor reduces the model



6 CRA Case with UML-RSDS

to 2 classes, with higher average cohesion, and a lower coupling ratio (0.5). The CRA is 1.6667. Ap-
plying the genetic algorithm to this recovers the first solution with CRA 3, after 10 generations. For test
B, applying createClasses produces a solution with 9 classes and CRA 2.5, but with 3 classes containing
only 1 feature each. Applying refactor improves the cohesion ratio and eliminates the ‘orphen’ features,
but reduces the CRA to -1.5 (7 classes). Applying the GA for 10 generations produces an improved
model with CRA 2.75. For model C, createClasses yields an initial model with CRA -3.917, refactor
reduces this to -4.09, but applying the GA for 10 generations improves this to 0.494. For model D,
the respective values are -20.83, -2.807, 0.369, and for model E -44, -20.37, -12.77. Incidently, the GA
found an improved solution for the simple example of Figure 3 of [2]: this has CRA 1.58, and the method
addItem in class Item instead of class Cart.

Test CRA after CRA after CRA after Execution time
createClasses refactor GA

A 3 1.666 3 15ms + 47ms + 0ms
B 2.5 -1.5 2.75 32ms + 1s + 7ms
C -3.917 -4.09 0.494 63ms + 8s + 16ms
D -20.83 -2.807 0.369 338ms + 114s + 32ms
E -44 -20.37 -12.77 1285ms + 1032s + 10ms

Table 1: Example test results

Table 2 shows the summary table completed for our solution.

Criteria Resolutions
Correctness/completeness All of the input models were converted to

output models satisfying the constraints.
Optimality We have obtained CRA values higher than those

in the provided solutions.
Complexity 1 pd for MT, 1 pd for GA adaption + integration,

2pd for testing + optimisation
Flexibility Alternative fitness functions (eg., giving higher weight to method-attribute dependencies)

can be directly specified,
as can stricter pruning of candidate solutions.

Performance The GA was the most time-expensive element,
but overall the execution time was practical.

Table 2: Solution evaluation table

All solution artifacts have been uploaded to SHARE (directory umlcra/umlcra), and are also available
at www.dcs.kcl.ac.uk/staff/kcl/umlcra. The specification is in the file mm.txt, and the use cases and
operations are listed in crausecases.txt and craoperations.txt.

For convenience, the generated Java code of the solution has been packaged as a jar file, and can be
used as follows:

java -jar umlcra.jar inB.txt 8

where the 1st argument is the name of the model input file, and the 2nd is the number of GA generations
to be performed. The output is written to out.txt (complete data) and to model.xmi (XMI format for
the class model). The application can also be used interactively by running java GUI. With interactive
execution, it is possible to apply refactor again during postprocessing to improve a GA-produced model.
An example of console execution is:



K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani 7

C:\Documents\umlrsds16\output>java Controller inE.txt 4

...

Coupling ratio is:

47.41096664092987

Cohesion ratio is:

27.033169036845507

CRA is:

-20.377797604084364

Time for preprocess = 1342

Population size = 6 Maxfitness = -19.2892639427566

Population size = 18 Maxfitness = -16.838195865953228

Population size = 139 Maxfitness = -16.838195865953228

Population size = 128 Maxfitness = -14.144243113912228

Time for ga = 334947

Time for postprocess = 0

Input files are: inA.txt, inB.txt, etc. Example outputs are in outA.txt, etc.

Conclusions

It is clear that the level of individual attributes and methods is too low for the practical reverse-engineering
or modularisation of large-scale software, and that appropriate groupings of features should be recog-
nised as the units of organisation. For small-scale problems an approach based on individual features
can produce acceptable results. We have shown that SBSE using genetic algorithms is able to enhance
or produce results with better CRA values than MT-based refactoring used on its own. GA by them-
selves (with a random initial population) are also able to find good solutions, but the MT pre-processing
accelerates the search. A drawback of the SBSE approach is that there is no rationale for the feature
re-assignments – which the transformation rules provide for the MT approach. In addition, the outcome
and execution time is subject to random variation. An alternative to genetic algorithms would be the use
of a backtracking mode execution of refactoring rules – this approach has been used for game-playing
software developed with UML-RSDS, however for this case study it would be difficult to define the
backtracking critera to trigger rules to be undone. The CRA index is not necessarily the best measure for
class diagram quality, and more subtle measures may be useful.

References
[1] SHARE site for solution: XP-TUe UML-RSDS.vdi.
[2] M. Fleck, J. Troya, M. Wimmer, The Class Responsibility Assignment Case, TTC 2016.
[3] K. Lano, S. Kolahdouz-Rahimi, Constraint-based specification of model transformations, Journal of Systems

and Software, vol. 88, no. 2, February 2013, pp. 412–436.
[4] The UML-RSDS toolset and manual, http://www.dcs.kcl.ac.uk/staff/kcl/uml2web/umlrsds.pdf,

2016.


