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Abstract

This paper describes the solution proposed by Bergen University Col-
lege for the ninth Transformation Tool Contest (TTC ’16)1, which re-
solves the Class Responsibility Assignment Case using a Transforma-
tion Tool based on Microsoft Excel and Visual Basic. The solution
receives a Responsibility Dependency Graph as an .xmi file, parses the
content, analyzes the relationships between the given features, gener-
ates a class diagram that aims to get the highest possible cohesion and
lowest possible coupling, and exports it as an .xmi file. The solution
is based on an adaptation of the Markov Clustering Algorithm used to
manage bi-directional, un-weighted sets of nodes and grouping them
into clusters.

1 Introduction

Cohesion is a property that refers to the degree to which the elements of a module belong together, while coupling
is the degree of interdependence between different modules. In order to generate high-quality models, the need for
measuring and comparing how strong the relationship is between different components of a module is extremely
important. Even though in some cases the coupling will always be inevitably higher than the cohesion, there
will always exist ways to optimize the resulting model as much as possible.

The algorithm used in this solution to generate the resulting class diagram is based on the foundations of
the Markov Clustering Algorithm [SVD00] [KM09] [LG15]. However, most of the steps have been slightly or
completely altered since they have been deemed not as effective for the proposed problem.

As described in the problem definition, for a total of 18 input features there are 682.076.806.159 possible class
diagrams built upon different feature combinations, so the time it takes for the solution to generate a potentially
optimal output is essential.

Being ρ the number of methods and σ the number of attributes, we can state that the complexity of the
algorithm used in this solution lies in the O(ρ3) level in the Big-O notation, since the worst case scenario
depends exclusively on the amount of methods received initially.

The objective of the proposed solution2is to perform a model transformation from the initial Responsibility
Dependency Graph received as input into a Class Diagram which attempts to achieve the highest possible CRA-
Index by having as high cohesion and low coupling as possible.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
1The full problem description can be found at: github.com/martin-fleck/cra-ttc2016/
2The proposed solution and other useful files can be found at: github.com/maximiliano-vela/ttc-2016 - SHARE demonstration/re-

viewing VM: XP-TUe XP Excel v2.vdi @ http://is.ieis.tue.nl/staff/pvgorp/share/



The meta-model transformation relies in linking each feature (method or attribute) to a class that encapsulates
it, as shown in Figure 2.

Figure 1: Responsibility Dependency Graph meta-model

2 Algorithm Implementation

The implementation starts off with a pre-processing step that transforms the input file into meaningful data
which shortly after will be used in order to generate the classes. The results are finally formatted as an .xmi file
for further use.
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Figure 2: Transformation process
2.1 Initial Processing

The first step in the process is importing the Responsibility Diagram and parsing it in order to harvest the
available features and existing relationships between them.

Table 1 Associate Matrix for Input A - First Step

Methods Attributes
0 1 2 3 4 5 6 7 8

0 1 0 1 0 0 0 0 1 1
1 1 1 0 2 0 0 1 1 0
2 0 0 1 1 1 0 0 0 0
3 1 2 0 1 0 1 0 1 0

A matrix of size ρ × (ρ + σ) is generated, where
ρ is the number of methods and σ is the number
of attributes. The matrix will be filled with 0, 1
or 2 which represents the type of relationship be-
tween two particular features (no relationship, uni-
directional and bi-directional respectively). This
value will be referred to as α.

The result after this step for Input A is shown
in Table 1. In the example, relationships for each
method with itself will be 1 but this can vary de-
pending on certain properties (explained further in
section 3).



Table 2 Associate Matrix for Input A - Second Step

Methods Attributes
0 1 2 3 4 5 6 7 8

0 1,4 0,2 1,1 0,2 0 0 0 1 1
1 1,2 1,5 0,1 2,4 0 0 1 1 0
2 0,1 0,1 1,3 1,1 1 0 0 0 0
3 1,2 2,4 0,1 1,5 0 1 0 1 0

The distinction between uni and bi-directional re-
lationships in the associated matrix is the first differ-
ence from the classic Markov Clustering Algorithm
implementation, which contemplates bi-directional
links only.

In the next step, the algorithm analyzes the simi-
larities between each pair of methods by counting
how many features they share relationships with
(both values should be > 0 to be counted). In the
example, methods 1 and 3 have four features in com-
mon (0, 1, 3 and 7). Each value will be calculated
for every pair of methods and placed next to each cell value separated by a comma, and will be referred to as β.
As a result, values in each cell will correspond to α,β as shown in Table 2.

Shortly after, a new value δ will be calculated on each of the recently modified cells. This calculation, as well
as the use of the diagonal will vary depending on various properties associated with the initial Responsibility
Dependency Graph. This is explained more in depth in section 3.

However, in the example shown above the affinity index (δ) is defined as δ = β. Results after this step are
shown in Table 2.

2.2 Class Generation

Before placing the features in their respective classes the following calculations will be performed:

1. Sum total for each method row, showing which method has the most/strongest relationships.
2. Maximum Affinity Index for each method column, showing which pair has the strongest relationship.
3. Total sum for each attribute column, showing by how many methods each attribute is used.

Results after this step are shown in Table 3.

Table 3 Associate Matrix for Input A - Third Step

Methods Attributes Sum
0 1 2 3 4 5 6 7 8

0 4 2 1 2 0 0 0 1 1 11
1 2 5 1 4 0 0 1 1 0 14
2 1 1 3 1 1 0 0 0 0 7
3 2 4 1 5 0 1 0 1 0 14

Max/Sum 4 5 3 5 1 1 1 3 1

From here on, we start by choosing the first row
with the highest row total. If the matrix exceeds a
threshold in the number of methods, values in this
row will be slightly increased in order to simulate the
generation of a superclass or ”leading” class, but in
the example shown values will remain the same.

For each method column in the row selected be-
fore, we check if the affinity index is equal to the
previously calculated maximum. If the values are
the same, we store that method in an array in order
to group them together in the class generation step. In the example, the first row selected will be Method 1
(with 14 as row sum), and the only candidate method will be itself. This attempts to ensure the highest possible
cohesion within all method-to-method relationships.

After that we move onto the grouping of attributes to be put within the same class. In order to do so, we
calculate the sum total of each attribute column but only for the methods previously selected. If the sum is
equal than or greater than 50 percent of the column total, that attribute will be selected since the majority of
methods that use it are candidates for the newly generated class. If the sum is less than 50 percent that means
the attribute will produce higher cohesion placed in a different class. For Method 1 in the example, attribute 6
will be grouped with it since 1 ≥ 0.5 × 1, but attribute 7 will not since 1 < 0.5 × 3.

Methods and attributes selected in the last section will be placed in a newly created class. In order to prevent
other classes from re-using them in the future, column values for each attribute and row/column values for each
method are set to zero. This process will go on generating classes by grouping methods and attributes until
values on all cells are zero.

For the sake of clarification, this step is shown in pseudo-code:



Algorithm 1 CRA Algorithm

procedure Classify(input.xmi)
read input.xmi and transform RDG into a matrix representation
while values in matrix are not 0 do

update row total
update maximum value for methods
update total sum for attributes
select methods with maximum affinity indexes
select attributes used by majority of methods
create class with selected methods and attributes
update matrix by removing entries of selected methods and attributes

end while
produce output.xmi from the produced classes
return output.xmi

end procedure

After wrapping up the last set of features within a class, the solution will transform the class diagram into a
.xmi file with the correct formatting and store it within the same file-path as the input.

3 The Diagonal Dilemma, Affinity Index Calculation and Leading Class

When analyzing and processing affinity indexes, values shown in the diagonal are often (such as in the example
shown in this paper) necessary in order to generate a class diagram that presents a high CRA-index. However,
in some cases it has been proven to be misleading and therefore largely increasing the overall coupling of the
output.

For this reason, it has been determined the need to establish a threshold within the amount of methods
required in order to deem the diagonal counter-productive. For our solution, every time the input exceeds 12
methods the diagonal will become zero. This threshold is not completely precise and might be refined after
further experimentation.

Furthermore, for inputs in which the amount of methods is < 12 the diagonal might require to be turned
to zero as well for very specific cases (such as having less attributes than methods and thus requiring multiple
methods to be put together in order to increase the cohesion). This avoids methods to be isolated and being
grouped up only with the attributes they make use of.

When it comes to calculating the Affinity Index δ, several different heuristics using both α and β have been
tested (such as α+ β, α2 + β, etc.) but the best results have been obtained by using simply δ = β.

Another concept introduced in this algorithm is the generation of a main or leading class which contains the
majority of the methods/attributes, while keeping the overall strongest relationships between features in the
associate matrix to classes other than the main one. This is a means to represent the way in which developers
generally build class diagrams when illustrating real-life schemes, having one class that contains a large number
of methods and attributes (i.e. class Person/Student/Employee, class Product/Furniture/Vehicle, etc.) as well
as a few other classes that provide functionality, usability or additional relevant information.

4 CRA-Index Results and Execution Time

Proposed Excel Solution3 TTC MOMoT Solution
Input CRA-Index Execution Time CRA-Index Execution Time

A 3.0 0,46 sec. 3.0 4 min. 03 sec.
B 2.99999999 1,13 sec. 1.125 5 min. 05 sec.
C 0.64803921 1,92 sec. -5.63571428 12 min. 02 sec.
D -0.2913547 7,54 sec. -23.6338095 26 min. 51 sec.
E 0.21916410 21,83 sec. -69.65545274 38 min. 08 sec.
F 1.92302499 2 min. 46 sec. TBA TBA
G -0.0343154 37 min. 42 sec. TBA TBA

Table 5 Class Diagram Generation Results for Proposed Solution compared to TTC’s

3Executions have been performed on a Lenovo Y50 notebook running Windows 8 x64, i5 4210H @ 2.90GHz, 8.00GB



5 Visualization

Figure 3: Class Diagram for Input A

The output .xmi file is transformed into a Ecore model which can be
later used for visualization through “Initialize ecore diagram diagram
file” feature in Eclipse. Figure 3 shows the class diagram for the
output produced for Input A.

In the future the proposed solution will be executed in a server
through a Powershell prompt, allowing users to provide an input file
and transform into a output .xmi file or an ecore model.

6 Related work

There have been several attempts done by researchers to solve the
CRA problem. Recently, meta-heuristic optimization techniques such
as Genetic Algorithm (GA), Hill Climbing (HC), Simulated Anneal-
ing (SA), Particle Swarm Optimization (PSO) have been analyzed by
many researchers [E07]. Multi-objective genetic algorithm (MOGA)
is another technique that has been used to solve the CRA problem
[BBL10] [MJ14].

7 Conclusion

The solution described in this paper resolves the Responsibility Dependency Assignment case relatively quickly
since it measures the relationships between features and goes straight to one of the available combinations, which
attempts to have the highest possible CRA-Index.

Constrains mentioned in the problem description are fulfilled thoroughly in every transformation performed,
ensuring the overall correctness of the output.

Additionally, the solution allows the user to provide a specific number of classes for the resulting class diagram,
drastically increasing the flexibility of the transformation. Similar output constrains can be easily added within
the Visual Basic module if necessary.
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