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This paper describes the SDMLib solution to the Class Responsibility Assignment Case for TTC2016.
SDMLib provides reachability graph computation ala Groove. Thus, the simple idea was to provide
rules for possible clustering operations and then use the reachability graph computation to generate
all possible clusterings. Then, we apply the CRAIndex computation to each generated clustering and
identify the best clustering. Of course, this runs into scalability problems, very soon. Thus, we extended
our reachability graph computation to do an A* based search space exploration. Therefore, we passed the
CRAIndex computation as a metric to our reachability graph computation and in each step, we consider
the set of not yet expanded graphs and choose the one, that has the best metric value for expansion. The
paper reports about the results we achieved with this approach.

1 Introduction

This paper describes the SDMLib solution to the Class Responsibility Assignment Case for TTC2016 [1].
SDMLib provides reachability graph computation ala Groove [2]. For a given start graph and a given set
of rules, the reachability graph computation generates all graphs that may be derived from the start graph
by applying all rules at all possible matches as often as possible in all possible orders. Each time a new
graph is computed, we search through the set of already computed graphs for an already known isomorphic
graph. As proposed by [2], SDMLib computes node and graph certificates which are then used as hash
keys to access potentially isomorphic graphs efficiently. The node certificates then also help to do the actual
isomorphism test. If a new graph has been generated, we create a so-called reachable state node and we
connect the reachable state node of the predecessor graph with the reachable state node for the new graph
via a rule application edge labeled with the name of the rule used. In addition, a root node of the graph is
attached to the reachable state node. Altogether, the generated reachability graph has a top layer consisting
of reachable state nodes connected via rule application edges and each reachable state node refers to the
corresponding application graph via a graphRoot link. In SDMLib, this whole structure is again a graph,
and graph rules may be applied to it in order to find e.g. reachable states with a maximal metric value for
the attached application graph or to find states where all successor states have lower metric values or to find
the shortest path leading to the best state. Actually, any graph related algorithm may be deployed.

The Class Responsibility Assignment Case challenges the rule orchestration mechanisms provided by
the different model transformation approaches. Thus, our solution uses the SDMLib reachability graph
computation for rule orchestration. This is a very simple way to apply all rules in all possible ways and
in addition we are able to investigate all intermediate results in order to identify which paths through the
search space are the most interesting ones. The drawback of this approach is that it wastes a lot of runtime
and memory space for copying the whole class model graph each time a rule is applied and for the search
of already known isomorphic copies of the generated graphs. As shown in the case description, the number
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of possible clusterings grows with the Bell number, i.e. for larger examples a complete enumeration of all
possible clustering is not possible in a meaningful time. As only a small fraction of the search space can be
explored, it might be helpful to be able to investigate all intermediate states to identify the most promising
spots for further expansion. Thus, we hope that the flexibility provided by the SDMLib reachability graphs
to investigate different intermediate states pays off, in the end.

As it is usually not possible to generate the whole reachability graph for a given example, our reachability
graph computation may be restricted to a maximum number of reachable states to be considered. Next, we
have extended our reachability graph computation with an A* like search space exploration that takes a
metric as parameter and at each step chooses the state with the best metric value for expansion. We have
developed two variants of this A* algorithm which will be discussed below.

The next section introduces the rules we use to solve the Class Responsibility Assignment Case and then
Section 3 shows the different search strategies we use in this example. Finally, 4 shows our performance
measurements. In the last section we sum up our results.

2 The Model Transformation Rules

Our feature clustering approach uses three SDMLib model transformation rules. In the preparation phase
we use the rule shown in Figure 1 to create one class for each feature in our class model.

c1 : ClassModelPO

<< start >>

<< bound>>

f2 : FeaturePOfeatures

classes encapsulates

c3 : ClassPO

<< create>>

name:="Class4"+f2.name

{allMatches}

Figure 1: Rule adding initial classes

This rule starts by matching the pattern object c1 to the ClassModel object passed as parameter. Then,
f2 is matched to a Feature object attached to this ClassModel object. The {allMatches} constraint causes
the rule to be applied to all possible matches. Thus, for each Feature object in our current ClassModel,
the <<create>> sterotype on pattern object c3 causes the creation of a new Class object. In addition
the new Class object is attached to the ClassModel via a classes link and to the Feature object via an
encapsulates link. Finally, the new Class object’s name attribute gets assigned the concatenation of the
prefix "Class4" and the name of the current Feature. Thus, after the execution of this rule, each feature
has its own class containing just this feature. This class model is then used as starting point for the repetitive
application of our clustering rules.

We use two different clustering rules, one for clustering along data dependencies and one for clustering
along functional dependencies. Figure 2 shows the data dependency clustering rule MergeDataDep:

The matching of this rule starts with the ClassModel object which is bound to c1 at rule invocation.
Then we follow a classes edge to find a match for c2, i.e. a Class object in our ClassModel. Next, we fol-
low an encapsulates edge to match a Method object m4 contained in c2. The object matched by m4 must
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c2 : ClassPO

f7 : FeaturePO

c6 : ClassPO

m4 : MethodPO a5 : AttributePO
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c1 : ClassModelPO

<< start >>

<< bound>>

{allMatches}

<< destroy>><< create>>

{matchOtherThen c2}
<< destroy>>

Figure 2: Merging Classes via Attribute Dependencies

have a dataDependency edge to an Attribute object matched by the pattern object a5. This Attribute
object in turn must be contained in a Class matched by c6. By default, SDMLib allows homomorphic
matches, thus c2 and c6 would be allowed to match the same Class object. Via the {matchOtherThen
c2} clause, we enforce isomorphic matching, i.e. c2 and c6 must match two different Class objects. Fi-
nally, the Class matched by c6 must belong to our ClassModel c1. When such a match is found, the
subpattern containing the FeaturePO pattern object f7 is executed on all possible matches. Pattern ob-
ject f7 matches for all features contained in the Class matched by c6. (Note, f7 exploits homomorphic
matching and will also match the Attribute object already matched by a5.) For each Feature object, the
encapsulates edge connecting it to the Class matched by c6 is deleted and a new isEncapsulatedBy

edge connecting it to the Class matched by c2 is created. After transferring all features to the Class

matched by c2, the Class matched by c6 is destroyed. Thus, the rule shown in Figure 2 merges two classes
that are connected via a dataDependency into one class.

Figure 3 shows our second clustering rule MergeFuncDep. It works similar to rule MergeDataDep but
it applies to a pair of classes that is connected via a functionalDependency.

Our two clustering rules merge classes only if there is a dependency between them. This already utilizes
application specific knowledge about our CRAIndex metric. Our search space expansion will start with
classes containing only one feature each. Merging classes without a dependency between them is not going
to improve the CRAIndex of the resulting class model. Merging classes has the potential to improve the
CRAIndex only if the classes contain features that depend on each other. Thus, our clustering rules are
already optimized for the optimization of the CRAIndex. Using a different metric would perhabs require a
more general clustering strategy. As the metric is evaluated during the search space exploration, it would be
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Figure 3: Merging Classes via Method Dependencies

easy to simply merge any two classes, as any graphs resulting from applying a non metric improving rule
would immediately be dismissed anyways.

3 The Search Space Expansion Mechanisms

At the beginning, a ReachbilityGraph object is initialized with a start graph or startState and with a set
of rules that shall be applied to the different reachable states. Our standard reachability graph computation
algorithm is shown in Listing 1. For the standard reachability graph computation, we call explore(depth)
where depth is the maximal number of states to be generated. This is used e.g. to terminate the search in case
of an unlimited search spaces. First, our expansion algorithm initializes its todo list with the startState
and adds the startState to a hash table of reachable states where a graph certificate is used as
key as proposed by [2]. Then, we line 5 loops through the todo list until it drains or the maximal depth
of reachable states is reached. Each time, line 6 removes the first element of the todo list and chooses
it as current state. Then line 7 and line 8 iterate through all rules and all matches. For each match,
we clone() the current state and apply the rule changes to that clone, resulting in a newState. As the
newState may have been created by other rule applications already, line 10 tries to find an isoOldState,
i.e. the find operation computes the certificate of the newState and tries to look it up in the states
hash table. This may involve a isomorphism check in case of accidentally matching certificates. If no
isoOldState is found, line 12 adds the newState to the hash table of reachable states, line 13 adds an
edge labeled with the applied rule from the current state to the newState, and line 14 adds the newState
to our todo list. If there is an isoOldState line 16 just adds an edge from the current state to the
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isoOldState.

1 R e a c h a b i l i t y G r a p h : : e x p l o r e ( d e p t h ) {
2 todo = new A r r a y L i s t ( ) ;
3 todo . add ( t h i s . s t a r t S t a t e ) ;
4 s t a t e s . p u t ( c e r t i f i c a t e ( t h i s . s t a r t S t a t e ) , s t a r t S t a t e ) ;
5 whi le ( ! t odo . i sEmpty ( ) && s t a t e s . s i z e ( ) <= d e p t h ) {
6 c u r r e n t = todo . g e t ( 0 ) ; t odo . remove ( 0 ) ;
7 f o r ( Rule r : t h i s . r u l e s ) {
8 whi le ( r . f i ndMatch ( ) ) {
9 n e w S t a t e = c u r r e n t . c l o n e ( ) . a p p l y ( r ) ;

10 i s o O l d S t a t e = f i n d ( s t a t e s , n e w S t a t e ) ;
11 i f ( i s o O l d S t a t e == n u l l ){
12 s t a t e s . p u t ( c e r t i f i c a t e ( n e w S t a t e ) , n e w S t a t e ) ;
13 addEdge ( c u r r e n t , r , n e w S t a t e ) ;
14 todo . add ( n e w S t a t e ) ;
15 } e l s e {
16 addEdge ( c u r r e n t , r , i s o O l d S t a t e ) ;
17 }
18 }
19 }
20 }
21 }

Listing 1: General Reachability Graph Computation

Our old reachability graph algorithm shown in Listing 1 removes elements from the beginning of its
todo list and adds new elements to the end of the todo list. This results in some kind of breadth first search
strategy.

In many examples we have considered so far, the given rules do not extend the given graph but they only
mark certain situations or move elements from one place to another. In such cases the number of different
graphs that may be generated is finite and thus the complete reachability graph may be generated. Then
you just call our explore method with the maximal Long value. The rules shown in Section 2 reduce the
number of classes by one on each rule application. Thus, the number of rule applications is also finite and
we might be able to compute the full reachability graph. However, the computation slows down dramatically
as soon as the memory used by our reachability graph exceeds the computers physical main memory size
(16 giga byte for our test computer). For the larger clustering example E this size is reached by about 25000
reachable states which is only a fraction of the overall possible states. When you cannot search through the
whole state space, the breadth first search strategy of our standard algorithm will most likely not reach the
interesting parts of the state space but it visits ”early” states, only. To adjust for a broader use and examples
like the current challenge, we have implemented three additional exploration algorithms. It is therefor now
possible to choose from the three different modes and still pass the depth of the expansion, offering great
flexibility for search space exploration. The three modes are the following:

3.1 Default A∗ like search space exploration

To enable an A∗ like search space expansion strategy Listing 2 extends our explore method with a metric
parameter. At call time we pass a concrete metric e.g. as Java 8 lambda expression.
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rg.explore(25000, g -> CRAIndexCalculator.calculateCRAIndex((ClassModel) g));

The new explore method just sorts the todo list in line 6 before choosing a new element. Thereby, each
step considers the state with the best CRAIndex for further expansion resulting in a depth first like expansion
strategy.

1 R e a c h a b i l i t y G r a p h : : e x p l o r e ( depth , m e t r i c ) {
2 todo = new A r r a y L i s t ( ) ;
3 todo . add ( t h i s . s t a r t S t a t e ) ;
4 s t a t e s . p u t ( c e r t i f i c a t e ( t h i s . s t a r t S t a t e ) , s t a r t S t a t e ) ;
5 whi le ( ! t odo . i sEmpty ( ) && s t a t e s . s i z e ( ) <= d e p t h ) {
6 s o r t ( todo , m e t r i c ) ;
7 c u r r e n t = todo . g e t ( 0 ) ; t odo . remove ( 0 ) ;
8 f o r ( Rule r : t h i s . r u l e s ) {
9 whi le ( r . f i ndMatch ( ) ) {

10 n e w S t a t e = c u r r e n t . c l o n e ( ) . a p p l y ( r ) ;
11 i s o O l d S t a t e = f i n d ( s t a t e s , n e w S t a t e ) ;
12 i f ( i s o O l d S t a t e == n u l l ){
13 s t a t e s . p u t ( c e r t i f i c a t e ( n e w S t a t e ) , n e w S t a t e ) ;
14 addEdge ( c u r r e n t , r , n e w S t a t e ) ;
15 todo . add ( n e w S t a t e ) ;
16 } e l s e {
17 addEdge ( c u r r e n t , r , i s o O l d S t a t e ) ;
18 }
19 }
20 }
21 }
22 }

Listing 2: Default A* based Search Space Expansion

3.2 Metric-based ”Ignore Decline” Mode

Our A∗ expansion strategy in each step still generates all successors of the current state. For example E
there are about 400 dependencies, thus, the initial state has about 400 successor states. While this number
decreases by one with each rule application, the first 100 rule applications have have 350 successors on
average resulting in 35000 states, which already exceeds our memory space. To improve this, Listing 3
improves our A∗ algorithm by comparing the metric value of the newState with the current bestMetric.
If the metric of the newState is lower then the bestMetric we ignore the newState, cf. line 13, and we
do not add it to our reachability graph nor to our todo list. Thus, the metric passed to the explore function
is evaluated for all graphs. The list of graphs to still be explored is also ordered based on the metric, thus
graphs with a better metric are explored earlier on. However we ignore all those graphs that decline our
current result.

1 R e a c h a b i l i t y G r a p h : : e x p l o r e ( depth , m e t r i c ) {
2 todo = new A r r a y L i s t ( ) ;
3 todo . add ( t h i s . s t a r t S t a t e ) ;
4 s t a t e s . p u t ( c e r t i f i c a t e ( t h i s . s t a r t S t a t e ) , s t a r t S t a t e ) ;
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5 b e s t M e t r i c = m e t r i c ( t h i s . s t a r t S t a t e ) ;
6 whi le ( ! t odo . i sEmpty ( ) && s t a t e s . s i z e ( ) <= d e p t h ) {
7 s o r t ( todo , m e t r i c ) ;
8 c u r r e n t = todo . g e t ( 0 ) ; t odo . remove ( 0 ) ;
9 f o r ( Rule r : t h i s . r u l e s ) {

10 whi le ( r . f i ndMatch ( ) ) {
11 n e w S t a t e = c u r r e n t . c l o n e ( ) . a p p l y ( r ) ;
12 i f ( m e t r i c ( n e w S t a t e ) < b e s t M e t r i c ){
13 c o n t i n u e ;
14 } e l s e {
15 b e s t M e t r i c = m e t r i c ( n e w S t a t e ) ;
16 }
17 i s o O l d S t a t e = f i n d ( s t a t e s , n e w S t a t e ) ;
18 i f ( i s o O l d S t a t e == n u l l ){
19 s t a t e s . p u t ( c e r t i f i c a t e ( n e w S t a t e ) , n e w S t a t e ) ;
20 addEdge ( c u r r e n t , r , n e w S t a t e ) ;
21 todo . add ( n e w S t a t e ) ;
22 } e l s e {
23 addEdge ( c u r r e n t , r , i s o O l d S t a t e ) ;
24 }
25 }
26 }
27 }
28 }

Listing 3: Metric based Reachability Graph Computation

3.3 Metric-based ”promote improvement” mode

The second mode promotes any improvements in the applied metric, thus stopping the current expansion
step as soon as the metric yields a better result for a newly generated graph. No further rules are applied
to the current graph and the discovered graph will now be explored as depicted in Listing 4. When line 16
detects that the newState is an improvement compared to the current state, line 18 aborts the expansion
of the current state and we choose the best state of our todo list for further expansion. This is again our
newState, as the old current state has been the best state in the previous expansion step and newState is
even better. In addition, line 17 pushes the old current state back into our todo list, for later reconsidera-
tion.

This algorithm very quickly returns local optimums of the reachability graph. In case it can not further
enhance a local optimum it stores the state of expansion on earlier graphs and continues expanding them
later on, so it will not only lead to the first local optimum but rather detect a few other, depending on how
many steps are necessary to reach them and limited by the depth constraint.

1 R e a c h a b i l i t y G r a p h : : e x p l o r e ( depth , m e t r i c ) {
2 todo = new A r r a y L i s t ( ) ;
3 todo . add ( t h i s . s t a r t S t a t e ) ;
4 s t a t e s . p u t ( c e r t i f i c a t e ( t h i s . s t a r t S t a t e ) , s t a r t S t a t e ) ;
5 improve : whi le ( ! t odo . i sEmpty ( ) && s t a t e s . s i z e ( ) <= d e p t h ) {
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6 s o r t ( todo , m e t r i c ) ;
7 c u r r e n t = todo . g e t ( 0 ) ; t odo . remove ( 0 ) ;
8 f o r ( Rule r : t h i s . r u l e s ) {
9 whi le ( r . f i ndMatch ( ) ) {

10 n e w S t a t e = c u r r e n t . c l o n e ( ) . a p p l y ( r ) ;
11 i s o O l d S t a t e = f i n d ( s t a t e s , n e w S t a t e ) ;
12 i f ( i s o O l d S t a t e == n u l l ){
13 s t a t e s . p u t ( c e r t i f i c a t e ( n e w S t a t e ) , n e w S t a t e ) ;
14 addEdge ( c u r r e n t , r , n e w S t a t e ) ;
15 todo . add ( n e w S t a t e ) ;
16 i f ( m e t r i c ( n e w S t a t e ) > m e t r i c ( c u r r e n t ){
17 todo . add ( c u r r e n t ) ;
18 c o n t i n u e improve ;
19 }
20 } e l s e {
21 addEdge ( c u r r e n t , r , i s o O l d S t a t e ) ;
22 }
23 }
24 }
25 }
26 }

Listing 4: Metric based depth first Reachability Graph Computation

Note, when the search is exhausted for some state and we go back to earlier states, rule application
on those earlier states will first produce the same matches as in earlier runs. These same old matches will
be identified by line 11 as isoOldStates and thus ignored. However, this requires the computation of a
certificate and an isomorphism check. To avoid this effort, our real implementation of the improve expansion
stores the number of already created successors for each state and on reconsideration, this number of rule
applications is directly ignored.

4 Performance Results

The following figures show the CRAIndex we achieved with our different exploration algorithms for dif-
ferent search depth values. Overall, the depth algorithm achieves pretty good CRAIndex values already for
very small search depth values. For input D the depth algorithm achieves a CRAIndex of 0.30 already for
depth 200 within 43.294 seconds. For depth 500 the CRAIndex improves to 0.40 within 05:24.005 minutes.
Surprisingly, further backtracking and visiting up to 2000 states again improves the CRAIndex to 0.49 now
needing 32:11.173 minutes. Usually, the depth algorithm finds its best result within 500 visited states.
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Figure 4: CRAIndex per Search Depth for Example B

Figure 5: CRAIndex per Search Depth for Example C
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Figure 6: CRAIndex per Search Depth for Example D

Figure 7: CRAIndex per Search Depth for Example E

The following figures show the performance of our algorithms for the different inputs and for the differ-
ent search depth values.
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Figure 8: Time (ms) per Search Depth for all inputs for algorithm default

Figure 9: Time (ms) per Search Depth for all inputs for algorithm depth
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Figure 10: Time (ms) per Search Depth for all inputs for algorithm ignore

Finally, Figure 11 shows the CRAIndex we achieve for the

Figure 11: Performance Summary

5 Summary
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