
Class Responsiblity Assignment Case:

a Viatra-DSE Solution∗

András Szabolcs Nagy

nagya@mit.bme.hu

Gábor Szárnyas

szarnyas@mit.bme.hu

Budapest University of Technology and Economics
Department of Measurement and Information Systems

MTA-BME Lendület Research Group on Cyber-Physical Systems

Abstract

This paper presents a solution for the Class
Responsibility Assignment Case of the 2016
Transformation Tool Contest. The task is to
assign features (methods and attributes with
dependencies to each other) to classes and op-
timize a software metric called CRA-Index.
The solution utilizes the Viatra-DSE frame-
work's Non-dominated Sorting Genetic Algo-
rithm (NSGA-II) and it extends the frame-
work with a domain-speci�c state encoder to
identify similar solutions to reach better per-
formance. Furthermore, it also uses a domain-
speci�c mutation operator and a slightly mod-
i�ed version of the provided transformation
rule.

1 Introduction

Automated model transformations are a key factor
in modern model-driven system engineering. Model
transformations allow the users to query, derive and
manipulate large industrial models, including models
based on existing systems, e.g. source code models cre-
ated with reverse engineering techniques. Since such
transformations are frequently integrated to modeling
environments, they need to feature both high perfor-
mance and a concise programming interface to support
software engineers.

∗This work was partially supported by the MTA-BME
Lendület Research Group on Cyber-Physical Systems.

Copyright c© by the paper's authors. Copying permitted for

private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ
Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

Design space exploration (DSE) aims to explore
di�erent design candidates with respect to well-
formedness constraints and objectives to aid system
engineers in �nding the best design or to dynamically
recon�gure a system at runtime. While DSE has a
long history (20�30 years) [8], especially for embedded
systems, it has been adapted to model-driven system
engineering only in the recent years (discussed as re-
lated work in [1]).
Viatra aims to provide the tooling support needed

for these challenges by 1) an expressive model query
language, 2) a carefully designed API for transforma-
tions and 3) a design space exploration tool easily in-
tegrated to the model-driven design process.

This paper presents a solution using Viatra [2, 5]
for the TTC 2016 Class Responsibility Assignment
Case [7], which can be formalized as a DSE problem.
The source code of the solution is available as an open-
source project.1 Additionally, there is a SHARE image
available with the source code and scripts to run the
solution on the provided input models.2

2 Case Description3

The problem to solve is a simpli�ed version of the class
responsibility assignment (CRA) problem. As an in-
put model, a set of attributes and methods are given
with dependencies between them, in particular, meth-
ods can use certain attributes and other methods. The
task is to assign all these features to classes with the
goal of optimizing a software metric called CRA-Index.
The CRA-Index is an objective function to maximize
and it combines the cohesion ratio (inner dependencies
of a class divided by the cardinality of the features)

1https://github.com/FTSRG/ttc16-cra-viatra-dse
2http://is.ieis.tue.nl/staff/pvgorp/share/

?page=ConfigureNewSession&vdi=ArchLinux64_

TTC-Arch-CRA-VIATRA.vdi
3The full description can be found here [7].

1

https://github.com/FTSRG/ttc16-cra-viatra-dse
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64_TTC-Arch-CRA-VIATRA.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64_TTC-Arch-CRA-VIATRA.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64_TTC-Arch-CRA-VIATRA.vdi


and coupling ratio (dependencies between two classes
divided by the cardinality of the features) of the class
diagram.

Contestants are given �ve models with increasing
complexity to solve and they are to produce the cor-
responding high-quality models by using model trans-
formation tools. The resulting models also have to
satisfy the following constraints: 1) all features have
to be assigned, 2) classes must have a unique name
and 3) empty classes are not allowed.

3 Background of the Solution

Viatra-DSE is a rule-based DSE framework [1, 9],
which can explore di�erent design candidates satisfy-
ing multiple criteria with respect to multiple objectives
using graph transformation rules.

Design space 
exploration

Exploration strategy

Initial model

Rules

Constraints

Objectives

Sequence of
rule applications

Sequence of
rule applications

Sequence of
rule applications

Rule
application

Goal model state

Initial 
model

Trajectory

Figure 1: Overview of the rule-based DSE approach.

3.1 Approach of rule-based DSE

Figure 1 overviews the most important concepts of this
approach from a perspective. A rule-based DSE prob-
lem consists of the following parameters:

• an initial model M0,
• a set of transformation rules R that de�nes how
the initial model can be manipulated,

• a set of well-formedness constraints C and
• a set of objectives O to optimize (minimize or
maximize).

A solution for such a problem is a sequence of transfor-
mation rule applications (also called trajectory), which
transforms the initial model M0 to a model Ms, which
satis�es all the well-formedness constraints in C. This
solution is expected to be optimal (high-quality) with
respect to objectives O.

The key strengths of this approach are that 1) mod-
els are attributed typed graphs and rules are graph
transformation rules, which allows tight integration
with model-driven system design, 2) the solution (i.e.
the trajectory) also describes how to reach the found
model from the initial state, which is important in cer-
tain problems, e.g. runtime recon�guration of a system

needs to answer how to reach the candidate con�gura-
tion and 3) objectives can be derived from the model
directly using even black box tools and from the tra-
jectory as well.

To solve such a problem, a solver has to traverse a
state space (also called design space) with an explo-
ration strategy. This state space has an initial state
representing the initial model and further states can
be reached by applying the transformation rules. The
state space can be in�nitely large (e.g. a rule can make
elements without an upper bound) and it can contain
cycles (e.g. a rule can delete elements what an other
rule just created). Figure 2 shows a partial design
space of a small CRA problem, where there are three
methods and a single attribute.

3.2 VIATRA

Viatra is an open-source Eclipse project written in
Java and Xtend [6] and it builds upon the Eclipse Mod-
eling Framework [4]. The Viatra project provides the
following main features:

• A declarative language for writing queries
over models, which are evaluated incremen-
tally upon model changes (formerly known as
EMF-IncQuery).

• An internal DSL over the Xtend [6] language
to specify both batch and event-driven, reactive
transformations.

• A complex event-processing engine over EMF
models to specify reactions upon detecting com-
plex sequences of events.

• A rule-based design space exploration framework
to explore design candidates as models satisfying
multiple criteria. Presented in Section 3.3.

• A model obfuscator to remove sensitive informa-
tion from a con�dential model, e.g. for creating
bug reports.

3.3 VIATRA-DSE

Viatra-DSE provides an easy way to specify a rule-
based DSE problem and to extend it with domain
speci�c needs. The condition (left hand side) of the
transformation rules can be speci�ed by the Viatra
Query language and the operation (right hand side)
by simple Java code. Both constraints and objec-
tives can be speci�ed either by the Viatra Query
language or by any custom Java code. Furthermore,
it supports the calculation of objectives both on the
actual model and on the trajectory as well (e.g. ex-
ecuting certain rules has a cost). Viatra-DSE has
several built-in strategies such as depth-�rst search,
breadth-�rst search for systematic full exploration of
the design space, �xed-priority search which uses pri-

2



M1 M2

M3 A1 C1

M1 M2

M3 A1

C1

M1 M2

M3 A1 C1

M1 M2

M3 A1

Activation of createClass rule

Activation of assignFeature rule

C1

M1 M2

M3 A1

C2

C1

M1 M2

M3 A1

C1

M1 M2

M3 A1

C2

C1

C3

C2 M1 M2

M3 A1

. . .

Recurring
states

A solution state
A solution trajectory

Figure 2: A part of the state space of a DSE problem and solution.

orities assigned to rules, and has metaheuristic strate-
gies such as hill climbing and evolutionary algorithms,
including Non-dominated Sorting Genetic Algorithm
(NSGA-II) [3] and Pareto envelope-based Selection Al-
gorithm (PESA) [10]. Custom, domain speci�c strate-
gies can be integrated as well.

To recognize similar model states it uses a state en-
coding technique, which encodes model states into a
textual representation. While these state codes can be
easily compared to each other, the encoding process
has a great impact on the exploration time. Addition-
ally, rule applications are also encoded into a textual
representation called activation codes. This allows to
store a trajectory by its activation codes and to re-
execute it later on an arbitrary model. Viatra-DSE
has a built-in generic state coder, which works per-
fectly for most of the time, but it can be exchanged
with a custom, domain-speci�c state coder, which can
improve the performance of the exploration.

The framework is also capable of parallel explo-
ration.

4 Implementation

In this section, we provide a detailed description about
how we instantiated the task as a rule-based DSE prob-
lem.

4.1 Transformation rules

Our solution uses the two transformation rules pro-
vided by the case, namely the createClass and assign-
Feature rules, however we enhance the createClass rule
with the following two modi�cations:

1. A class can be created only if there are no empty
class in the current model. This allows to prune

the search space without losing any solutions.
2. Newly created classes given a name CX, where

X is a number depending on how many classes
were created on the actual trajectory. This en-
sures that the classes have a unique name.

4.2 Well-formedness constraints

While the modi�ed createClass rule ensures the unique
name of the classes, we used Viatra Query to capture
the other two constraints.

4.3 Objectives

We use two objective functions: one that calculates the
CRA-Index of a class diagram and one that measures
the violations of well-formedness constraints. The
CRA-Index is calculated in the provided way, expect
we use Viatra Query to calculate MAI and MMI
incrementally upon model change. The other �tness
function measures the number of unassigned features
and it shall be minimized. This helps the exploration
to reach a solution more easily.

These two objectives creates a multi-objective op-
timization problem, which makes comparing solutions
nontrivial. In this solution, we use the domination
function [3] to compare solution candidates: a solution
candidate s1 dominates an other solution candidate s2
if there is an objective function oi that oi(s1) > oi(s2)
and for any other objective oj 6= oi : oj(s1) ≥ oj(s2).
This approach will �nd a well-formed solution and an
ill-formed solution candidate equal if the ill-formed so-
lution candidate has a higher CRA-Index.

3



4.4 Exploration with NSGA-II

For the exploration strategy, we used the NSGA-II
genetic algorithm [3] crafted for multi-objective opti-
mization problems. This algorithm maintains a pop-
ulation, i.e. a set of solution candidates (trajectories),
and modi�es them with genetic operators (mutations
and crossovers) to derive new solution candidates. In
an iteration, it combines the previous population and a
newly created population and selects the best solution
candidates to produce the next generation. The adap-
tion of this algorithm as a rule-based DSE strategy can
be found in [1].

We con�gured the NSGA-II strategy in the follow-
ing way:

• Population size: 40.
• The �rst population is generated by a breadth-
�rst search algorithm selecting a trajectory into
the population with a given probability and with
a minimal length of 2.

• The following genetic operators are used:

1. A mutation that adds a random rule appli-
cation to the end of a trajectory.

2. A mutation that modi�es a random rule ap-
plication in the trajectory.

3. Cut and splice crossover, which exchanges
the tails of two trajectories creating two child
trajectories.

4. Swap rule application crossover.
5. A custom domain-speci�c mutation opera-

tor that removes all createClass rule appli-
cation, where the created class remained un-
used. This helps the algorithm to �nd a well-
formed solution.

• Mutations are used more frequently than
crossovers: mutation rate is 0.8.

• The used stop condition consists of two sub-
conditions that has to be ful�lled at the same
time: 1) in the current population there is at least
one solution that survived 100 iterations (i.e. the
exploration cannot create a better solution) and
2) there is a well-formed solution in the current
population.

4.5 State Encoding

The solution uses a custom domain-speci�c state coder
as the built-in state coder failed to recognize similar so-
lutions. For example, if there are two methodsM1 and
M2, which are assigned to two di�erent classes C1 and
C2, then the built-in state coder creates a state code
C1(M1), C2(M2) or C1(M2), C2(M1) depending on
the trajectory, which are eventually representing the
same solution (the actual state code is much longer
and redundant). Using this state coder, NSGA-II can

store duplications in the population, which decreases
e�ciency. Thus, we created a domain-speci�c state
coder that encodes model sates leaving out the identi-
�ers of the classes: (M1), (M2). This state coder also
has better performance reducing the exploration time.

4.6 An Alternative Solution

We also experimented with an other approach, where
�rst we created a class for each feature in the initial
model using the VIATRA Model Transformation API.
Then we ran the exploration with a single rule that
merges two classes. While, this approach could gener-
ate good solutions with positive CRA-Index with ap-
proximately in the same time, the presented solution
produces better results.

5 Evaluation

In this section, we evaluate the results of our approach.

5.1 Setup

As NSGA-II is a metaheuristic algorithm, it cannot
provide a consistent solution for each run and run-
time may vary because of the adaptive stop condition.
Thus, we run the exploration 30 times for each input
model and consider the median of found �tness values
and the median of runtime as result. This allows to
easily compare our results to other contestants' work.

The benchmarks were conducted on a 64-bit Arch
Linux virtual machine running in SHARE. The ma-
chine utilized a single core of a 2.00 GHz Xeon E5-2650
CPU and 1 GB of RAM. We used OpenJDK 8 to run
the Viatra-DSE framework.

5.2 Results

Optimality : Figure 3 shows a box plot for the CRA-
Index of the generated solution models for each input
model. As it can be seen, the smallest input model
is solved pretty consistently, with a CRA-Index of 3.
While for input model B, most of the runs returns a
solution with a CRA-Index around 3.75, for the more
complex input models the result varies greatly. How-
ever, the found solution models always has a positive
CRA-Index.

Performance: Figure 4 shows exploration times of
the di�erent runs in seconds on a logarithmic scale.
The median values are marked with red. The run-
time of the exploration greatly varies, especially on
the largest input model E. It could �nd a solution
in 20 minutes, while in the worst case it needed 74
minutes. An interesting property of the input model
C that while it has twice as many features and thrice
as many dependencies than input model B, the explo-
ration time is just slightly longer.

4



A B C D E
CRA-Index (best) 3 4 2.9090 4.3008 7.0337
CRA-Index (median) 3 3.7917 2.0736 3.3816 4.7654
Time (median) 00:21.091 00:56.191 01:07.211 05:22.987 36:42.535

Table 1: Results

2

4

6

A B C D E
Input model

C
R

A
-I

nd
ex

Values of the CRA-Index

Figure 3: Values of the CRA-Index.

100

1000

A B C D E
Input model

E
xe

cu
tio

n 
tim

e 
[s

]

Execution times of the design space exploration

Figure 4: Execution times. The median values are
marked with red.

Table 1 presents our aggregated results for each in-
put model as stated in Section 5.1. We also included
the metric of the best solutions our approach could
�nd, to show that if execution time does not matter it
can produce even better solutions.

6 Summary

This paper presented a complete solution for the Class
Responsibility Assignment case of the 2016 Transfor-
mation Tool Contest. The approach of rule-based DSE
and theViatra-DSE framework proved to be e�cient
for modeling the problem and su�cient for solving the
case. The solution could be improved by gaining a
deeper understanding of the CRA-Index metric and by
adding a supplementary heuristic to the exploration.

References

[1] H. Abdeen, D. Varró, H. A. Sahraoui, A. S.
Nagy, C. Debreceni, Á. Hegedüs, and Á. Horváth.
Multi-objective optimization in rule-based design
space exploration. In ACM/IEEE Inter. Conf. on
Autom. Soft. Eng., pages 289�300, 2014.

[2] G. Bergmann, I. Dávid, Á. Hegedüs, Á. Horváth,
I. Ráth, Z. Ujhelyi, and D. Varró. Viatra 3 : A
reactive model transformation platform. In 8th
International Conference on Model Transforma-
tions. Springer, 2015.

[3] K. Deb, S. Agrawal, A. Pratap, and T. Meyari-
van. A fast and elitist multiobjective genetic al-
gorithm: NSGA-II. IEEE Trans. Evolutionary
Computation, 6(2):182�197, 2002.

[4] Eclipse.org. Eclipse Modelling Framework
(EMF). https://www.eclipse.org/emf/.

[5] Eclipse.org. VIATRA Project. https://www.

eclipse.org/viatra/.

[6] Eclipse.org. Xtend � Modernized Java. https:

//www.eclipse.org/xtend/.

[7] M. Fleck, J. Troya, and M. Wimmer. The class
responsibility assignment case. In 9th Transfor-
mation Tool Contest (TTC 2016), 2016.

[8] M. Gries. Methods for evaluating and covering
the design space during early design development.
Integration, 38(2):131�183, 2004.

[9] Á. Hegedüs, Á. Horváth, and D. Varró. A model-
driven framework for guided design space explo-
ration. Autom. Softw. Eng., 22(3):399�436, 2015.

[10] J. D. Knowles, R. A. Watson, and D. Corne. Re-
ducing local optima in single-objective problems
by multi-objectivization. In Evolutionary Multi-
Criterion Optimization, First International Con-
ference, pages 269�283, 2001.

5

https://www.eclipse.org/emf/
https://www.eclipse.org/viatra/
https://www.eclipse.org/viatra/
https://www.eclipse.org/xtend/
https://www.eclipse.org/xtend/

	Introduction
	Case DescriptionThe full description can be found here ttc-cra-case.
	Background of the Solution
	Approach of rule-based DSE
	VIATRA
	VIATRA-DSE

	Implementation
	Transformation rules
	Well-formedness constraints
	Objectives
	Exploration with NSGA-II
	State Encoding
	An Alternative Solution

	Evaluation
	Setup
	Results

	Summary

