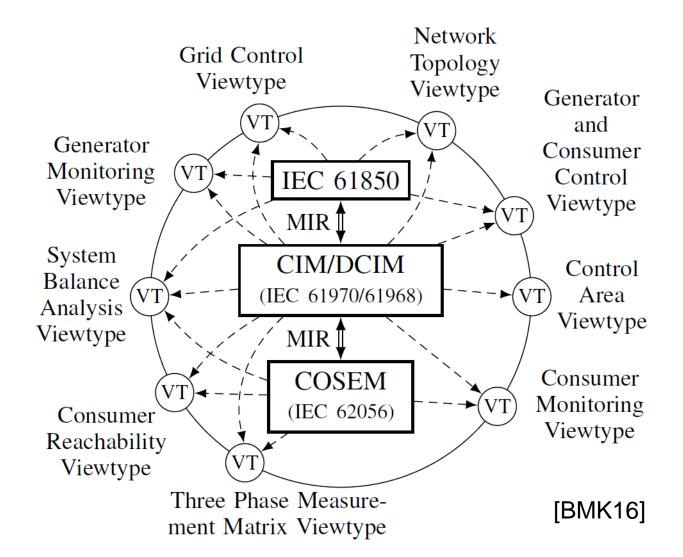


The TTC 2017 Outage System Case for Incremental Model Views

Georg Hinkel

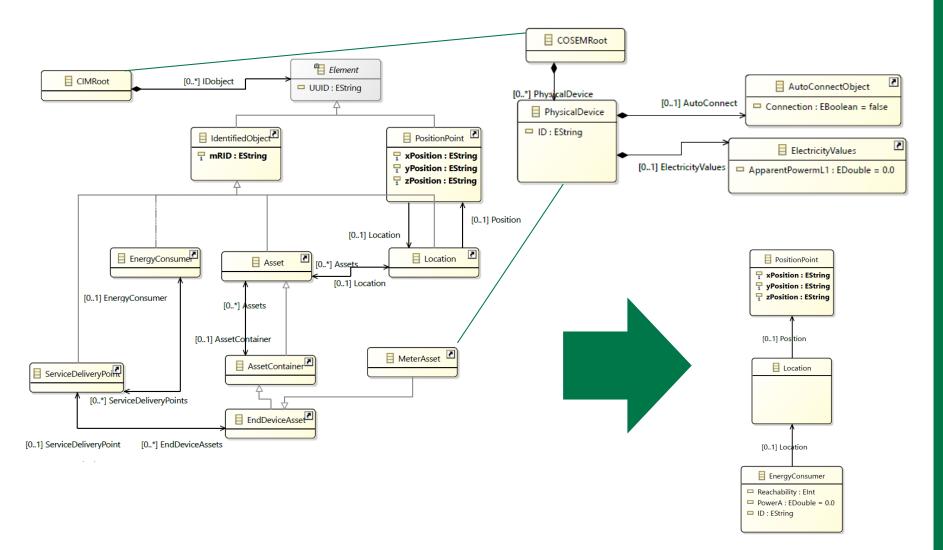
Multitude of Standards in Smart Grids



- IEC 61970 Common Information Model (CIM)
 - Physical components, measurement of data, cont
- IEC 61968 Distributed CIM (DCIM)
 - Extension of IEC 61970 for distribution network
- IEC 61850 Series of standards
 - Interoperability of intelligent electronic devices in substation automation systems
- IEC 62056 Companion Specification for Energy Metering (COSEM)
 - Data exchange for meter reading, tariff and load control

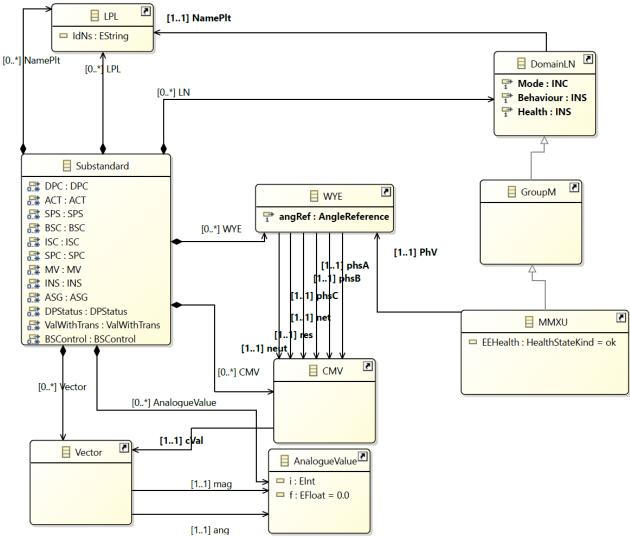
CIM + DCIM >20k elements, >800 Classes

A model-based Outage Management System



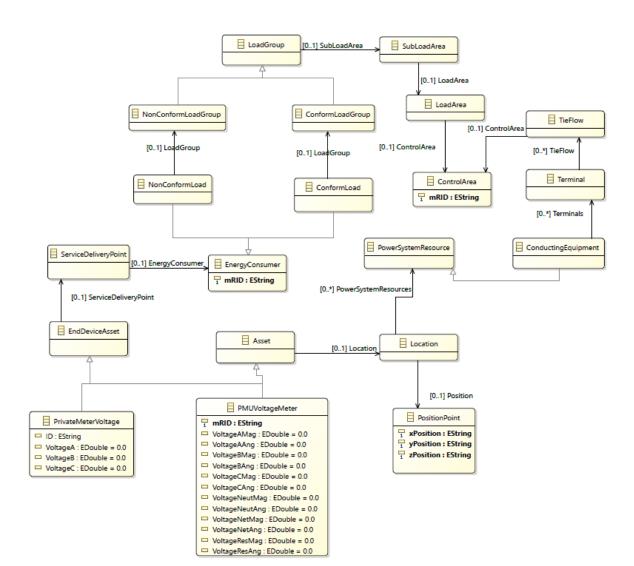
- Create view instances for two of the views in [BMK16], if possible incrementally
- OutageDetection task
 - Join CIM and COSEM model to keep an overview of the connection to smart meters
 - View combines the location of a smart meter with its connectivity
- OutagePrevention task
 - Detect disturbances of a network by computing indicators of a voltage wave
 - View selects voltage values from a substation and from smart meters
- Reference solution in MODELJOIN [BHK+14] available

Outage Detection Task: Metamodel excerpts


F7

Outage Detection Task: View

1	theta join CIM.IEC61968.Metering.MeterAsset with COSEM.PhysicalDevice where "CIM.IEC61968.Metering.MeterAsset.mRID_=_COSEM. PhysicalDevice.ID" as jointarget.EnergyConsumer {
2	keep calculated attribute "COSEM.PhysicalDevice.AutoConnect.Connection" as EnergyConsumer.Reachability:Integer
3	keep calculated attribute "COSEM.PhysicalDevice.ElectricityValues.ApparentPowermL1" as EnergyConsumer.PowerA:Double
4	
4	<pre>keep calculated attribute "CIM.IEC61968.Metering.MeterAsset.ServiceDeliveryPoint.EnergyConsumer.mRID" as EnergyConsumer.ID: String</pre>
5	keep calculated attribute "ifuCIM.IEC61968.Metering.MeterAsset.ServiceDeliveryPoint.EnergyConsumer->oclIsKindOf(CIM.IEC61970.
	LoadModel.ConformLoad) then CIM.IEC61968.Metering.MeterAsset.ServiceDeliveryPoint.EnergyConsumer.ConformLoadGroup.
	SubLoadArea.LoadArea.ControlArea.mRIDuelseuCIM.IEC61968.Metering.MeterAsset.ServiceDeliveryPoint.EnergyConsumer.
	NonConformLoadGroup.SubLoadArea.LoadArea.ControlArea.mRID _u endif" as Consumer.ControlAreaID:String
0	
6	<pre>keep outgoing CIM.IEC61968.Assets.Asset.Location as type jointarget.Location {</pre>
7	<pre>keep outgoing CIM.IEC61968.Common.Location.Position as type jointarget.PositionPoint {</pre>
8	keep attributes CIM.IEC61968.Common.PositionPoint.xPosition,
9	CIM.IEC61968.Common.PositionPoint.yPosition,
10	CIM.IEC61968.Common.PositionPoint.zPosition
11	}
12	7
13	
10	L


Outage Prevention Task: IEC 61850 Metamodel excerpt

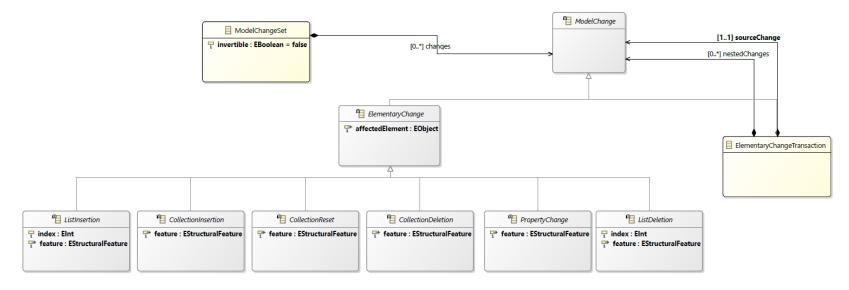
FZI

Outage Prevention Task: Target Metamodel

Outage Prevention Task: View

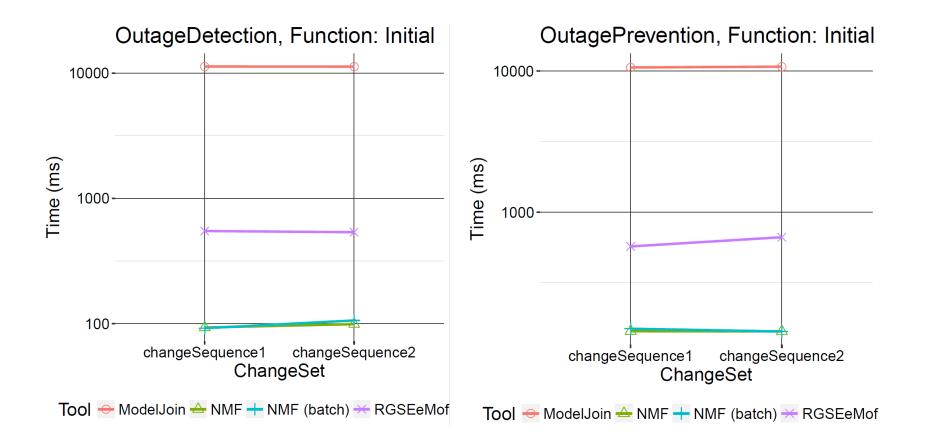
1 theta join CIM.IEC61968.Metering.MeterAsset with substationStandard.LNNodes.LNGroupM.MMXU where "CIM.IEC61968.Metering.MeterAsset. mRID_=_substationStandard.LNNodes.LNGroupM.MMXU.NamePlt.IdNs" as jointarget.PMUVoltageMeter { $\mathbf{2}$ keep attributes CIM.IEC61970.Core.IdentifiedObject.mRID 3 keep calculated attribute "substationStandard.LNNodes.LNGroupM.MMXU.PhV.phsA.cVal.mag.f" as PMUVoltageMeter.VoltageAMag:Double keep calculated attribute "substationStandard.LNNodes.LNGroupM.MMXU.PhV.phsA.cVal.ang.f" as PMUVoltageMeter.VoltageAAng:Double $\mathbf{4}$ $\mathbf{5}$ keep calculated attribute "substationStandard.LNNodes.LNGroupM.MMXU.PhV.phsB.cVal.mag.f" as PMUVoltageMeter.VoltageBMag:Double keep calculated attribute "substationStandard.LNNodes.LNGroupM.MMXU.PhV.phsB.cVal.ang.f" as PMUVoltageMeter.VoltageBAng:Double 6 7 keep calculated attribute "substationStandard.LNNodes.LNGroupM.MMXU.PhV.phsC.cVal.mag.f" as PMUVoltageMeter.VoltageCMag:Double 8 keep calculated attribute "substationStandard.LNNodes.LNGroupM.MMXU.PhV.phsC.cVal.ang.f" as PMUVoltageMeter.VoltageCAng:Double 9 keep calculated attribute "substationStandard.LNNodes.LNGroupM.MMXU.PhV.neut.cVal.mag.f" as PMUVoltageMeter.VoltageNeutMag: Double 10keep calculated attribute "substationStandard.LNNodes.LNGroupM.MMXU.PhV.neut.cVal.ang.f" as PMUVoltageMeter.VoltageNeutAng: Double 11keep calculated attribute "substationStandard.LNNodes.LNGroupM.MMXU.PhV.net.cVal.mag.f" as PMUVoltageMeter.VoltageNetMag:Double 12keep calculated attribute "substationStandard.LNNodes.LNGroupM.MMXU.PhV.net.cVal.ang.f" as PMUVoltageMeter.VoltageNetAng:Double 13keep calculated attribute "substationStandard.LNNodes.LNGroupM.MMXU.PhV.res.cVal.mag.f" as PMUVoltageMeter.VoltageResMag:Double keep calculated attribute "substationStandard.LNNodes.LNGroupM.MMXU.PhV.res.cVal.ang.f" as PMUVoltageMeter.VoltageResAng:Double 1415keep supertype CIM.IEC61968.Assets.Asset as type jointarget.Asset { 16keep outgoing CIM.IEC61968.Assets.Asset.Location as type jointarget.Location { 17keep outgoing CIM.IEC61968.Common.Location.Position as type jointarget.PositionPoint { 18keep attributes CIM.IEC61968.Common.PositionPoint.xPosition, 19CIM.IEC61968.Common.PositionPoint.yPosition, 20CIM. IEC61968. Common. PositionPoint.zPosition 21} 22keep outgoing CIM.IEC61968.Common.Location.PowerSystemResources as type jointarget.PowerSystemResource { 23keep subtype CIM.IEC61970.Core.ConductingEquipment as type jointarget.ConductingEquipment { $\mathbf{24}$ keep outgoing CIM.IEC61970.Core.ConductingEquipment.Terminals as type jointarget.Terminal { 25keep outgoing CIM.IEC61970.Core.Terminal.TieFlow as type jointarget.TieFlow { 26keep outgoing CIM.IEC61970.ControlArea.TieFlow.ControlArea as type jointarget.ControlArea { 27keep attributes CIM.IEC61970.Core.IdentifiedObject.mRID 28} 29} 30 } } 3132} 333 343 35} 3637theta join CIM.IEC61968.Metering.MeterAsset with COSEM.PhysicalDevice where "CIM.IEC61968.Metering.MeterAsset.mRID_=UCOSEM. PhysicalDevice.ID" as jointarget.PrivateMeterVoltage { 38keep attributes COSEM.PhysicalDevice.ID 39keep calculated attribute "COSEM.PhysicalDevice.ElectricityValues.VoltageL1" as PrivateMeterVoltage.VoltageA:Double 40keep calculated attribute "COSEM.PhysicalDevice.ElectricityValues.VoltageL2" as PrivateMeterVoltage.VoltageB:Double

Benchmark Framework and Setup

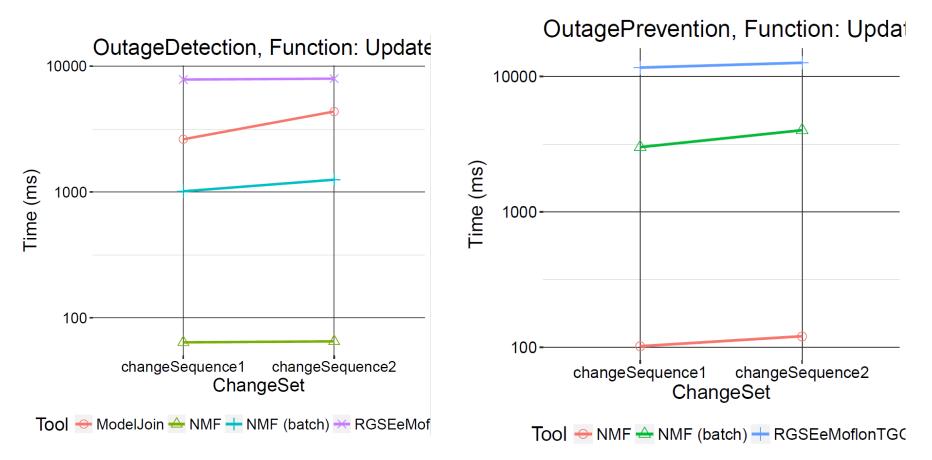


- Benchmark divided in four phases
 - Initialization: Initialize framework, load metamodels, etc.
 - Load: Load initial models into memory
 - Initial: Transform initial view
 - Update (x20): Apply an update sequence
- Models available as XMI either for each state or as change models

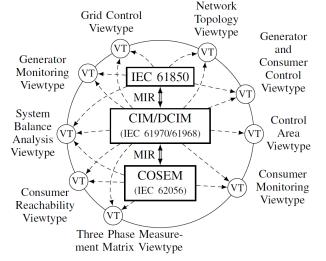
Change Metamodel


 Ecore metamodel of NMF Change descriptions available along with case resources

Can be transformed into change representations of the respective modeling tool


Results Batch

Results Incremental


7/21/2017

Combine Multiple Models in (incremental) model views

- IEC 61968/61970
- IEC 61850

Conclusion

- IEC 62056
- Application in the Smart Grid domain
 - Detect Outages
 - Prevent (predict) Outages

- Propagate changes or recreate view model from scratch
 - Changes available in NMF Change format

hinkel@fzi.de THANK YOU FOR YOUR ATTENTION

References

- [Mit15] V. Mittelbach, "Model-driven Consistency Preservation in Cyber-Physical Systems," Master's thesis, Karlsruhe Institute of Technology (KIT), Germany.
- [BMK16] E. Burger, V. Mittelbach, and A. Koziolek, "Model-driven consistency preservation in cyber-physical systems," in Models@run.time co-located with MODELS 2016, CEUR Workshop Proceedings, 2016.
- [IEC11] IEC 61970 energy management system application program interface (ems-api) part 301 common information model (cim) base, 2011
- [IEC15] IEC 61850 communication networks and systems for power utility automation 2015
- [DUA14] D. U. Association, "Excerpt from companion specification for energy metering cosem interface classes and obis identification system," 2014
- [BHK+14] E. Burger, J. Henß, M. Küster, S. Kruse, and L. Happe, "View-Based Model-Driven Software Development with ModelJoin," Software & Systems Modeling, vol. 15, no. 2, pp. 472–496, 2014.