
F
Z

I F
O

R
S

C
H

U
N

G
S

Z
E

N
T

R
U

M
IN

F
O

R
M

A
T

IK

An NMF solution to the State Elimination Case at

the TTC 2017

Georg Hinkel

Sparse adoption of MDE in industry

 Tool support perceived insufficient

[Sta06,Mo+13]

 Much less manpower in tool development than IDEs

such as Visual Studio, IntelliJ, …

 Developers hardly change their primary

language [MR13]

 Project requirements or code reuse

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 2

.NET Modeling Framework (NMF)

 Model repository management in .NET

 Generate code for metamodels

 Load models

 Save models

 (Mostly) Compatible to EMF

 Further tools for Model Transformation,

Synchronization, Incrementalization, …

 Implemented as Internal DSLs

 Open source: http://github.com/NMFCode/NMF

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 3

http://github.com/NMFCode/NMF

Tool Appropriateness

 NTL: unidirectional batch model transformations

 Assumption: correspondence relation between source and target

elements important

 not applicable

 NMF Synchronizations: multimode model synchronization

 Incremental and/or bidirectional model transformations

 not applicable

 NMF Expressions: Incrementalization system and inverter of model

analyses

 Analyses must be referentially transparent except for object creation

 not applicable

 Solution is based on standard C# but uses generated model API

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 4

Loading the model

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 5

Creating a unique initial state with no incoming

transitions

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 6

Creating a unique final state with no outgoing

transitions

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 7

Considerations on eliminating states

 For each state, the elimination has to create or update 𝑖 ⋅ 𝑜
transitions where 𝑖 is the number of incoming transitions and 𝑜 the

number of outgoing transitions

 For 𝑖 = 𝑛, 𝑜 = 𝑛 (as suggested in the description), this yields 𝑛2

transitions for each state 𝑂(𝑛3) runtime

 Avoid creating transitions to reduce complexity (most states have

few transitions)

 If we create transitions lazily, for each state, 𝑖 ⋅ 𝑜 new transitions are

generated

 These new transitions grow the number of transitions to generate in

later iterations of the loop!

 Try to reduce creating new transitions by sorting states by 𝑖 ⋅ 𝑜

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 8

State Elimination

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 9

Evaluation

 Conciseness: 102 lines of code (31 empty or only braces)

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 10

Evaluation II

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 11

50

500

5000

50000

500000

5000000

50 500 5000 50000 500000

T
im

e
 [
m

s
]

Size [#Elements]

Conclusion

 Insights

 Model transformation technologies are the wrong tool here

 Key improvements algorithmic

 Key advantages of the solution

 Concise (about as concise as external languages)

 Solution easily integrates into C# good tool support

 Very good performance

 Very good scalability

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 12

THANK YOU FOR YOUR ATTENTION

hinkel@fzi.de

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 13

