
F
Z

I F
O

R
S

C
H

U
N

G
S

Z
E

N
T

R
U

M
IN

F
O

R
M

A
T

IK

An NMF solution to the State Elimination Case at 

the TTC 2017

Georg Hinkel



Sparse adoption of MDE in industry

 Tool support perceived insufficient

[Sta06,Mo+13]

 Much less manpower in tool development than IDEs 

such as Visual Studio, IntelliJ, …

 Developers hardly change their primary

language [MR13]

 Project requirements or code reuse

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 2



.NET Modeling Framework (NMF)

 Model repository management in .NET

 Generate code for metamodels

 Load models

 Save models

 (Mostly) Compatible to EMF

 Further tools for Model Transformation, 

Synchronization, Incrementalization, …

 Implemented as Internal DSLs

 Open source: http://github.com/NMFCode/NMF

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 3

http://github.com/NMFCode/NMF


Tool Appropriateness

 NTL: unidirectional batch model transformations

 Assumption: correspondence relation between source and target

elements important

 not applicable

 NMF Synchronizations: multimode model synchronization

 Incremental and/or bidirectional model transformations

 not applicable

 NMF Expressions: Incrementalization system and inverter of model

analyses

 Analyses must be referentially transparent except for object creation

 not applicable

 Solution is based on standard C# but uses generated model API

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 4



Loading the model

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 5



Creating a unique initial state with no incoming

transitions

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 6



Creating a unique final state with no outgoing

transitions

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 7



Considerations on eliminating states

 For each state, the elimination has to create or update 𝑖 ⋅ 𝑜
transitions where 𝑖 is the number of incoming transitions and 𝑜 the

number of outgoing transitions

 For 𝑖 = 𝑛, 𝑜 = 𝑛 (as suggested in the description), this yields 𝑛2

transitions for each state  𝑂(𝑛3) runtime

 Avoid creating transitions to reduce complexity (most states have

few transitions)

 If we create transitions lazily, for each state, 𝑖 ⋅ 𝑜 new transitions are

generated

 These new transitions grow the number of transitions to generate in 

later iterations of the loop!

 Try to reduce creating new transitions by sorting states by 𝑖 ⋅ 𝑜

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 8



State Elimination

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 9



Evaluation

 Conciseness: 102 lines of code (31 empty or only braces)

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 10



Evaluation II

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 11

50

500

5000

50000

500000

5000000

50 500 5000 50000 500000

T
im

e
 [
m

s
]

Size [#Elements]



Conclusion

 Insights

 Model transformation technologies are the wrong tool here

 Key improvements algorithmic

 Key advantages of the solution

 Concise (about as concise as external languages)

 Solution easily integrates into C#  good tool support

 Very good performance

 Very good scalability

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 12



THANK YOU FOR YOUR ATTENTION

hinkel@fzi.de

7/21/2017 Georg Hinkel - An NMF solution to the State Elimination Case at the TTC 2017 13


