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Sparse adoption of MDE in industry

 Tool support perceived insufficient

[Sta06,Mo+13]

 Much less manpower in tool development than IDEs 

such as Visual Studio, IntelliJ, …

 Developers hardly change their primary

language [MR13]

 Project requirements or code reuse
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.NET Modeling Framework (NMF)

 Model repository management in .NET

 Generate code for metamodels

 Load models

 Save models

 (Mostly) Compatible to EMF

 Further tools for Model Transformation, 

Synchronization, Incrementalization, …

 Implemented as Internal DSLs

 Open source: http://github.com/NMFCode/NMF
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Tool Appropriateness

 NTL: unidirectional batch model transformations

 Assumption: correspondence relation between source and target

elements important

 not applicable

 NMF Synchronizations: multimode model synchronization

 Incremental and/or bidirectional model transformations

 not applicable

 NMF Expressions: Incrementalization system and inverter of model

analyses

 Analyses must be referentially transparent except for object creation

 not applicable

 Solution is based on standard C# but uses generated model API
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Loading the model
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Creating a unique initial state with no incoming

transitions
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Creating a unique final state with no outgoing

transitions
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Considerations on eliminating states

 For each state, the elimination has to create or update 𝑖 ⋅ 𝑜
transitions where 𝑖 is the number of incoming transitions and 𝑜 the

number of outgoing transitions

 For 𝑖 = 𝑛, 𝑜 = 𝑛 (as suggested in the description), this yields 𝑛2

transitions for each state  𝑂(𝑛3) runtime

 Avoid creating transitions to reduce complexity (most states have

few transitions)

 If we create transitions lazily, for each state, 𝑖 ⋅ 𝑜 new transitions are

generated

 These new transitions grow the number of transitions to generate in 

later iterations of the loop!

 Try to reduce creating new transitions by sorting states by 𝑖 ⋅ 𝑜
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State Elimination
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Evaluation

 Conciseness: 102 lines of code (31 empty or only braces)
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Evaluation II
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Conclusion

 Insights

 Model transformation technologies are the wrong tool here

 Key improvements algorithmic

 Key advantages of the solution

 Concise (about as concise as external languages)

 Solution easily integrates into C#  good tool support

 Very good performance

 Very good scalability
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