
Yage Solution to the State Elimination as a Model

Transformation Problem of the TTC’17

Christoph Eickhoff
University of Kassel
Software Engineering

christoph@uni-kassel.de

Simon-Lennert Raesch
University of Kassel
Software Engineering
lennert@uni-kassel.de

Philipp Kolodziej
University of Kassel
Software Engineering
philipp@uni-kassel.de

Abstract

This paper describes the approach taken to solve the State Elimination
as a Model Transformation Problem of the transformation tool contest
2017. The graph engine used is a new competitor in the field of model
transformation tools. Yage (Yet another graph engine1) was developed
by Philipp Kolodziej for his thesis at the Software Engineering Research
Group in Kassel.

1 Introduction

Yage is a new and minimalistic yet powerful graph engine, still undergoing major changes. The TTC’17 is a
great opportunity to find inspiration for further development and recognize the need for improvements. The
biggest strengths of Yage are its simplicity, the simple data structures and algorithms in its core and basically,
that it represents a fresh start. With that comes one of its biggest weaknesses - the lack of certain features.
Working on this transformation problem and therefore encountering new and different challenges will expose
those weaknesses and help to guide further development on the Yage project.

2 Getting to work with EMF input data

In order for Yage to work the input data needs to be of a specific format, i.e. not EMF data. To achieve this
a model to model transformation is done during the loading of the EMF data available in XMI format. Yage is
based upon a simplified graph model consisting of nodes and edges, with nodes explicitly modeled as classes but
edges being associations. Nodes have a list of attributes that can be used to either represent data or store meta
information such as the type of the represented object. The general approach is very generic and focuses on
solving graph engine tasks, i.e. rule execution for graph transformations. The class model is depicted in figure
1.

3 Rules

3.1 Yage Rule Visualization

The visual notation of the rule graph is based upon a color scheme and circles, representing nodes and arrows,
representing uni-directional edges between nodes. The color scheme enables the visualization to combine several
steps of the rule matching and application into a unified image. For the first step, finding a suitable set of nodes,
blue circles and nodes are used. They represent objects that need to be present, in their depicted configuration,

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
1https://github.com/fujaba/org.fujaba.graphengine

1

Figure 1: Generic Yage graph model

in the working graph. Lilac nodes and edges are considered just like blue circles in this first step. In the second
step, the algorithm checks for nodes and edges depicted in red, meaning that those nodes and edges must not be
present in the working graph for the rule to match. Only if a match has been found, nodes and edges of the color
green are considered in addition to a second evaluation of the lilac objects. Nodes and edges of green color are
created during this last step, nodes and edges in lilac have been matched in step one and are now being deleted
from the working graph. The visualization thus makes the whole process of applying rules an easy to visually
grasp concept, utilizing common colors and a simplified structure for nodes and edges. The deliberate decision
to not use UML-like notations for objects abstracts the graph context from the more technical view of objects.

3.2 From algorithmic approach to rules and Algorithm objects

The solution to the problem consists of a multi-step algorithm. Once input data is loaded as a graph compatible
to the Yage class model, the graph is then enhanced using a set of graph transformation rules. A new initial state
is created and additional states are added to the this newly created state. Analogous a new final state is created
and additional states are added again. Following this initial creation of new states, the next step is to repeatedly
eliminate states. The algorithm chooses a state and adds an eliminate flag to it’s attributes list. Additionally a
source state is chosen and marked using a current flag. For each edge from the selected eliminate state a new
edge leading to thats edge’s target state is created and the state is flagged as used. Once all states reachable via
the eliminate state have been flagged as used, these flags are removed, the current flag is removed and replaced
by a past flag. This step is repeated for all applicable source (current) states per selected eliminate state. Once
this process of merging all edges that lead via the node to be deleted, the node is removed and all flags are
reset. As this process is repeated all possible combinations are considered. While the algorithmic approach is
rather simple (see an incomplete pseudo-code implementation approach in listing 1) transforming this approach
to a rule based one was not as straightforward. There are eight different cases for rerouting edges that involve
the state to be removed, thus requiring a total of 20 rules for the solution to the case. In addition a couple
of new features were introduced to Yage, namely the option to name edges selected in a previous rule for later
referencing as well as the possibility to combine graph transformation rules to algorithms, with the possibility to
repeatedly apply some rules or sequences of rules before continuing with the next rule in the algorithm. This is
a very powerful approach similar to the Fujaba Activity Diagrams [Fujaba]. The transformation algorithm can
also easily be serialized or deserialized from and to JSON. This way the complete algorithm can be exported
and imported just like basic graphs and transformation rules. As these features are quite new, the syntax and
especially the visualization have not been completely redesigned to be easily understandable. As can be seen in
figure 1 and listing 2 naming edges isn’t very intuitive yet. Implementing the solution to this problem has lead
to further exploration of possible ways to define Yage’s graph transformation tools and new ways of designing
them will be a future task. Creating algorithms from graph transformation rules is on the opposite already a
very intuitive way of creating solutions to more complex scenarios that involve multiple rules that are easier
created as parts. It’s syntax can be seen in listing 3.

Listing 1: Pseudo-code for algorithmic approach

1 loadGraphData () ;
2 prepareGraphData () ;
3 // s t a r t e l im ina t i ng s t a t e s
4 f o r (State de lS ta t e : a l l S t a t e s) {

2

5 de lS ta t e . f l a g ("eliminate") ;
6 f o r (State sourceSta t e : a l l S t a t e s) {
7 i f (d e lS ta t e != sourceSta t e) {
8 sourceSta t e . f l a g ("current") ;
9 f o r (Edge outgoing : d e lS ta t e . outgoingEdges) {

10 t a r g e tS t a t e = outgoing . t a r g e tS t a t e ;
11 new Edge (sourceState , t a r g e tS t a t e) ;
12 t a r g e tS t a t e . f l a g ("used") ;
13 . . .
14 }
15 }
16 }
17 }

Figure 2: Prepare elimination of state (with pp, pk, kk, kp)

Listing 2: Prepare elimination of state (with pp, pk, kk, kp)

1 PatternGraph gt r =
2 new PatternGraph ("prepare elimination of state (with pp, pk, kk, kp)") ;
3 PatternNode p = new PatternNode ("#{current} && !(#{used})") . addPatternAttr ibute (
4 new PatternAttr ibute () . s e tAct ion ("+") . setName ("used") . setValue (t rue)) ;
5 PatternNode k = new PatternNode ("#{eliminate}") ;
6 g t r . addPatternNode (p , k) ;
7 p . addPatternEdge ("-" , "#{pp}" , p) ;
8 p . addPatternEdge ("==" , "#{pk}" , k) ;
9 k . addPatternEdge ("==" , "#{kk}" , k) ;

10 k . addPatternEdge ("==" , "#{kp}" , p) ;
11 p . addPatternEdge (
12 "+" , "’((’ + #{pp} + ’)*((’ + #{pk} + ’)(’ + #{kk} + ’)*(’ + #{kp} + ’))*)*’" ,

p) ;

Listing 3: Creation of several Algorithm objects

1 Algorithm stateCaseTTC2017 = new Algorithm ("TTC 2017 State Case") ;
2
3 Algorithm e l im ina t eS ta t e = new Algorithm ("eliminate state") ;
4 Algorithm handleSourceNode = new Algorithm ("handle source node") ;
5 Algorithm red i r e c tRoute = new Algorithm ("redirect route") ;
6
7 stateCaseTTC2017 . addAlgorithmStep (getStateCasePreparationAlgorithmTTC2017 ()) ;
8 stateCaseTTC2017 . addAlgorithmStep (e l im inateS ta t e , t rue) ;
9

10 e l im ina t eS ta t e . addAlgorithmStep (getMarkStateForEl iminat ionPattern ()) ;
11 e l im ina t eS ta t e . addAlgorithmStep (handleSourceNode , t rue) ;
12 handleSourceNode . addAlgorithmStep (getMarkWithCurrentPattern ()) ;
13 handleSourceNode . addAlgorithmStep (getMarkFallbackWithCurrentPattern ()) ;

3

14 handleSourceNode . addAlgorithmStep (red i rectRoute , t rue) ;
15 r ed i r e c tRoute . addAlgorithmStep (getPrepareStateWithPqPkKkKqPattern () , t rue) ;
16 r ed i r e c tRoute . addAlgorithmStep (getPrepareStateWithPkKkKqPattern () , t rue) ;
17 r ed i r e c tRoute . addAlgorithmStep (getPrepareStateWithPqPkKqPattern () , t rue) ;
18 r ed i r e c tRoute . addAlgorithmStep (getPrepareStateWithPkKqPattern () , t rue) ;
19 r ed i r e c tRoute . addAlgorithmStep (getPrepareStateWithPpPkKkKpPattern () , t rue) ;
20 r ed i r e c tRoute . addAlgorithmStep (getPrepareStateWithPpPkKpPattern () , t rue) ;
21 r ed i r e c tRoute . addAlgorithmStep (getPrepareStateWithPkKkKpPattern () , t rue) ;
22 r ed i r e c tRoute . addAlgorithmStep (getPrepareStateWithPkKpPattern () , t rue) ;
23 handleSourceNode . addAlgorithmStep (getUnmarkCurrentPattern ()) ;
24 handleSourceNode . addAlgorithmStep (getRemoveMarksPattern () , t rue) ;
25 e l im ina t eS ta t e . addAlgorithmStep (getEl iminateMarkedStatePattern ()) ;
26 e l im ina t eS ta t e . addAlgorithmStep (getUnmarkPastPattern () , t rue) ;

4 Results

The results of the Yage transformations on the input data calculations can be seen in figure 3. We were able to
successfully handle six of the input data files that the example JFLAP [JFLAP] implementation timed out on.

References

[JavaStringPool] http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.5

[JFLAP] http://www.jflap.org

[Fujaba] Ulrich Nickel, Jrg Niere, and Albert Zndorf. 2000. The FUJABA environment. In Proceedings of the
22nd international conference on Software engineering (ICSE ’00). ACM, New York, NY, USA, 742-745.
DOI=http://dx.doi.org/10.1145/337180.337620

4

Figure 3: Yage test results

5

