
The TTC 2019 TT2BDD Case (v1.1)

Antonio García-Domínguez
Aston University

B4 7ET, Birmingham, United Kingdom
a.garcia-dominguez@aston.ac.uk

May 26, 2019

Model transformation tools have reached a considerable level of maturity
in the core features, and are currently developing in many directions. Some
tools are focusing on providing higher performance for large models or com-
plex transformations. Others focus on bidirectionality, visualisation, trace-
ability, or verifiability, among other research directions. Whereas past cases
in TTC have focused on specific research directions, this case study presents
a well-known simple transformation and welcomes researchers to apply their
research to it. The aim of this case is to serve as a showcase of the var-
ious directions that model transformation research is going towards at the
moment.

1 Introduction

Past editions of the Transformation Tool Contest have focused on a variety of topics:

• In 2018, the Quality-based Software Selection and Hardware-Mapping case [4] dis-
cussed optimisation-oriented model transformations (with a combination of perfor-
mance and solution quality). The Social Media Live Case [7] considered perfor-
mance in updating model views as models changed (with a strong preference for
approaches supporting incrementality).

• In 2017, the Smart Grid case focused on incrementality [6], the Families to Persons
case discussed bidirectional transformations [1], State Elimination focused on per-
formance and the live case on Transformation Reuse [5] discussed mechanisms to
share complex logic across multiple versions of a transformation.

• In 2016, optimisation-oriented model transformations were discussed in consider-
able breadth through the Class Responsibility Assignment case [2], and an alter-

1



native dataflow-based notation for model transformation was evaluated in the live
case study [3].

While these were notable examples of realistic transformations, they were narrowly
focused on a specific topic,and their inherent complexity discouraged some attendees
from trying their hand with their own research agenda on the transformation.
This year, we propose a broader contest that welcomes all active lines of work on

model transformation. It is based on a simpler, well-known transformation from the
ATL Zoo [8]: TT2BDD (Truth Tables to Binary Decision Diagrams). Striving for raw
performance is an option, but the case welcomes approaches that focus on other attributes
of interest of a high-quality model transformation: for example, verifiability, traceability,
bidirectionality, or understandability. Solution providers are welcome to propose their
own attributes of interest. In general, this case is proposed as a showcase of the current
variety of model transformation tools.
All resources for this case are available on Github1. Please follow the link in the

footnote and create a pull request with your own solution after you have submitted your
description to EasyChair.
The rest of the document is structured as follows: Section 2 describes the TT2BDD

transformation. Section 3 several tasks of interest that should be tackled in a solution
(authors are free to propose their own tasks of interest). Section 4 mentions the bench-
mark framework for those solutions that focus on raw performance. Finally, Section 5
mentions an outline of the initial audience-based evaluation across all solutions, and the
approach that will be followed to derive additional prizes depending on the attributes
targeted by the solutions.

2 Transformation Description

This section introduces the Truth Tables to Binary Decision Diagram transformation,
with a description of the input and output metamodels, and an outline of an implemen-
tation.

2.1 Input Metamodel: Truth Tables

The input metamodel is shown on Figure 1. The TruthTable class is as the root of the
model, and contains a collection of Ports and Rows. Ports come in two types: Input-
Ports and OutputPorts. Rows contain sequences of Cells, which assign values to
the InputPorts and OutputPorts of the table.
Automated EMF opposite references are used liberally in the metamodel to simplify the

specification of the transformation. owner is used to access the container from several
child objects (e.g. the TruthTable of a Row), and it is possible to see which cells
referenced a specific Port.

1https://github.com/TransformationToolContest/ttc2019-tt2bdd

2

https://github.com/TransformationToolContest/ttc2019-tt2bdd


TruthTable

name : EString

Port

name : EString

InputPortOutputPort

Row

Cell

value : EBoolean = false

[1..1] port

[0..*] cells

[1..1] owner

[1..*] cells

[1..1] owner

[1..*] ports

[1..1] owner

[2..*] rows

Figure 1: Class diagram for the input Truth Tables metamodel

A B C D S

0 0 - - 0
0 1 0 0 1
0 1 0 0 1
0 1 0 1 0
0 1 1 - 0
1 0 0 0 0
1 0 1 0 1
1 - - 1 0
1 1 0 0 1
1 1 1 0 0

Table 1: Example truth table: A to D are input ports and S is an output port. “-” means
“ignored”.

3



BDD

name : EString

Port

name : EString

InputPort OutputPort

Tree Leaf

Assignment

value : EBoolean = false

Subtree

[0..1] ownerBDD

[1..1] tree

[1..1] owner

[1..*] assignments[1..1] port [0..*] assignments

[1..1] treeForZero

[0..1] ownerSubtreeForZero

[1..1] treeForOne

[0..1] ownerSubtreeForOne

[1..1] port

[0..*] subtrees

[1..1] owner

[1..*] ports

Figure 2: Class diagram for the output Binary Decision Diagram metamodel, in the orig-
inal tree-based version.

A sample model is shown on Table 1. The truth table has four InputPorts named A
to D, and one OutputPort named S. The first Row contains only 3 Cells, specifying
that if A and B are 0, then S should be 0.

2.2 Output Metamodel: Binary Decision Trees

The original output metamodel from the ATL Zoo version is shown on Figure 2. The
BDD class is the root of the model, and contains the root of the Tree and a collection of
Ports. Similarly to the Truth Tables metamodel, there are InputPorts and Output-
Ports.

BDD

name : EString

Tree

Leaf

Subtree

[1..1] root

[0..1] ownerBDD [0..*] trees [1..1] treeForZero [0..*] ownerSubtreeForZero

[1..1] treeForOne [0..*] ownerSubtreeForOne

Figure 3: Changed classes in the graph-based variant of the Binary Decision Diagram
metamodel (2019-05-26). Omitted clases remain the same.

4



A0

B0

S = 0

1

C0

D0

S = 1

1

S = 0

1

S = 0

1

D0

B0

C0

S = 0

1

S = 1

1

C0

S = 1

1

S = 0

1

S = 0

Figure 4: Equivalent BDD for the truth table on Table 1

Figure 3 shows the changes introduced into a revised version of the original metamodel,
which allow the BDD to be a rooted acyclic graph and not just a tree. This would
allow the BDD to reuse common subtrees, which would produce more compact circuits
in some situations. The case provides both versions as separate metamodels: solution
implementers are free to choose either version.

Tree is the common superclass for any node in the tree. Inner nodes check the value
of an InputPort: if it is a false value, evaluation will proceed through the treeFor-
Zero Tree; otherwise, evaluation will go through the treeForOne Tree. Leaf nodes are
Leaf objects, which provide an Assignment of a boolean value to each of the available
OutputPorts.
The equivalent BDD for the truth table on Table 1 is shown on Figure 4. Subtrees

are represented by the circle referencing an InputPort and their subtrees for when the
port takes a 0 or 1 value. Assignments are represented by the highlighted nodes that
provide values to the OutputPorts.

2.3 Process Outline

The transformation essentially needs to construct a (preferably minimal) binary decision
diagram that produces the same values for the output ports, given the same values in
the input ports. Given the high interest about this problem in circuit design, many
algorithms have been proposed in the literature.
Solution authors are welcome to implement a more optimal algorithm in their trans-

formation tool. This section will only outline a simple approach that can be readily
implemented without too much complication.
There are some basic mappings which are immediately obvious:

• Each TruthTable object should correspond to a BDD object, with the same
name and equivalent Ports.

5



• Each InputPort and OutputPort should be mapped to an object of the BDD
type with the same name, and should be assigned the same name.

• Each Row should become a Leaf node: the Cells for the OutputPorts will
become Assignments.

The complexity is in deriving the inner nodes: the Subtree objects. One simple
approach is to find a TT InputPort which is (ideally) defined in all the Rows, and
turn it into an inner node (a Subtree) which points to the equivalent BDD InputPort
and has two Trees:

• The zero subtree, produced from the Row(s) where the port was 0. This will be
a Subtree if there are at least two rows in that situation: the transformation
should proceed recursively in this case with those rows, excluding the input ports
that have already been considered. If there is only one such row, this would simply
point to the Leaf created above.

• The one subtree, produced in a parallel way to the zero subtree.

This simple approach does not necessarily ensure a minimal subtree, as in some points
there may be multiple ports to choose from. It may require improvements for cases where
there are no input ports which are defined in all available rows. Authors are welcome to
implement a more efficient or optimal approach in their solutions.

3 Main Task

The obvious main task in this case is to implement the TT2BDD transformation in your
favourite model transformation language, ensuring that the resulting BDDs are equivalent
to the original truth table. To simplify the work involved, the case includes an Eclipse
Modelling Framework implementation of the metamodels in the ttc2019.metamodels
project within the metamodels folder, and a set of sample XMI input models conforming
to the metamodels in the models folder.
The models folder includes two additional tools, which can be run with java -jar

tool.jar:

• generator.jar can produce truth tables of an arbitrary number of input and
output ports, given seed. Solution implementers may want to be careful with the
values given, as truth tables grow exponentially as more input ports are added.

• validator.jar can validate if a BDD model is equivalent to a source truth table
model, by evaluating all the rows in the TT model through the BDD and com-
paring the values of the OutputPorts. This tool is required to check that your
transformation is correct. The tool accepts both tree-based and graph-based BDD
models.

6



Solutions are free to focus on any specific quality attribute of the transformation be-
yond optimality and performance. For instance, it may be useful to be able to prove that
the transformation does indeed produce a BDD which is equivalent to the TT (even if
suboptimal). It may also be interesting to be able to visualize the BDD being built from
the TT, or to be able to trace which subtree came from which collection of rows.
The conciseness of the transformation may also be of interest, given that its recursive

nature may be difficult to map to some existing transformation languages.

4 Benchmark Framework

If focusing on performance, the solution authors should integrate their solution with the
provided benchmark framework. It is based on that of the TTC 2017 Smart Grid case [6],
and supports the automated build and execution of solutions. For this specific case study,
the visualisation of the results is currently disabled.
The benchmark consists of three phases:

1. Initialization, which involves setting up the basic infrastructure (e.g. loading
metamodels). These measurements are optional.

2. Load, which loads the input models.

3. Run, which runs the transformation, produces the BDD and saves the file.

4.1 Solution requirements

Solutions should be forks of the main Github project2, and should be submitted as pull
requests after the descriptions have been submitted to EasyChair. For details about the
submission format, please consult the call for solutions3.
Each solution wishing to use the benchmarking framework should print to the standard

output a line with the following fields, separated by semicolons (“;”):

• Tool: name of the tool.

• Model: name of the model being transformed.

• RunIndex: the index of the repetition of the transformation.

• Phase: the name of the phase.

• MetricName: the name of the metric. It may be the used Memory in bytes, or
the wall clock Time spent in integer nanoseconds.

To enable automatic execution by the benchmark framework, solutions should add a
subdirectory to the solutions folder of the benchmark with a solution.ini file stat-
ing how the solution should be built and how it should be run. As an example, the

2https://github.com/TransformationToolContest/ttc2019-tt2bdd
3https://www.transformation-tool-contest.eu/cfs.html

7

https://github.com/TransformationToolContest/ttc2019-tt2bdd
https://www.transformation-tool-contest.eu/cfs.html


Listing 1: solution.ini file for the reference ATL solution
1 [build]
2 default=./gradlew installDist
3 skipTests=./gradlew installDist
4
5 [run]
6 cmd=JAVA_OPTS="−Xms4g" build/install/EMFSolutionATL/bin/EMFSolutionATL

solution.ini file for the reference ATL solution is shown on Listing 1. In the build
section, the default option specifies the command to build and test the solution, and
the skipTests option specifies the command to build the solution while skipping unit
tests. In the run section, the cmd option specifies the command to run the solution.

The repetition of executions as defined in the benchmark configuration is done by the
benchmark. For 5 runs, the specified command will be called 5 times, passing any re-
quired information (e.g. run index, or input model name) through environment variables.
Solutions must not save intermediate data between different runs: each run should be
entirely independent.
The name and absolute path of the input model, the run index and the name of the tool

are passed using environment variables Model, ModelPath, RunIndex and Tool. Solution
authors are suggested to study the example ATL solution on how to use these values to
run their transformation.

4.2 Running the benchmark

The benchmark framework only requires Python 3.3 to be installed. Furthermore, the
solutions may imply additional frameworks. We would ask solution authors to explicitly
note dependencies to additional frameworks necessary to run their solutions.
If all prerequisites are fulfilled, the benchmark can be run using Python with the

command python scripts/run.py. Additional options can be queried using the option
--help. The benchmark framework can be configured through the config/config.json
file: this includes the input models to be evaluated (some of which have been excluded by
default due to their high cost with the sample solution), the names of the tools to be run,
the number of runs per tool+model, and the timeout for each command in milliseconds.

5 Evaluation

Given the call for a broader set of research interests in this transformation, the evaluation
will operate on two dimensions:

• Is it a high-quality model transformation? The transformation should be complete,
correct, easy to understand, efficient, and produce optimal results.

8



The validator.jar will be used to check the produced BDDs against the source
truth tables, and the authors will need to provide a convincing argument about the
correctness of the solution.

Attendees to the contest will evaluate the understandability of the solution, and
the benchmark framework will provide independent measurements of memory and
time usage.

Tree sizes for the BDDs will be considered for the optimality of the transformations:
the smaller, the better.

• Does it highlight a promising research direction? Although the transformation may
not be entirely complete or may be harder to understand, it may serve as an example
of an active research area within model transformations that the community may
wish to showcase.

This may include aspects such as incrementality, bidirectionality, traceability, ver-
ifiability, or the ability to visualize interactively the transformation, among other
areas of interest in the field.

Depending on the submitted solutions, the awards for this dimension may change.
If there are no common areas of interest in the solutions, an audience-driven “Most
Promising” award will be awarded. If there are common themes between solutions,
dedicated 1st/2nd/3rd place awards for those research areas may be awarded.

References

[1] Anthony Anjorin, Thomas Buchmann, and Bernhard Westfechtel. The Families to
Persons Case. In Proceedings of the 10th Transformation Tool Contest, volume 2026,
pages 27–34, Marburg, Germany, July 2017. CEUR-WS.org.

[2] Martin Fleck and Javier Troya. The Class Responsibility Assignment Case. In Pro-
ceedings of the 9th Transformation Tool Contest, volume 1758, pages 1–8, Vienna,
Austria, July 2016. CEUR-WS.org.

[3] Antonio García-Domínguez. TTC’16 live contest case study: execution of dataflow-
based model transformations. https://www.transformation-tool-contest.eu/
2016/livecontest.html, July 2016. Last accessed on 2019-05-10. Archived on
http://archive.is/gHEys.

[4] Sebastian Götz, Johannes Mey, René Schöne, and Uwe Aßmann. Quality-based
Software-Selection and Hardware-Mapping as Model Transformation Problem. In
Proceedings of the 11th Transformation Tool Contest, volume 2310, pages 3–11,
Toulouse, France, June 2018. CEUR-WS.org.

[5] Georg Hinkel. The TTC 2017 live contest on transformation reuse in
the presence of multiple inheritance and redefinitions. https://www.

9

https://www.transformation-tool-contest.eu/2016/livecontest.html
https://www.transformation-tool-contest.eu/2016/livecontest.html
http://archive.is/gHEys
https://www.transformation-tool-contest.eu/2017/solutions_livecontest.html
https://www.transformation-tool-contest.eu/2017/solutions_livecontest.html


transformation-tool-contest.eu/2017/solutions_livecontest.html, July
2017. Last accessed on 2019-05-10. Archived on http://archive.is/gHEys.

[6] Georg Hinkel. The TTC 2017 Outage System Case for Incremental Model Views.
In Proceedings of the 10th Transformation Tool Contest, volume 2026, pages 3–12,
Marburg, Germany, July 2017. CEUR-WS.org.

[7] Georg Hinkel. The TTC 2018 Social Media Case. In Proceedings of the 11th Trans-
formation Tool Contest, volume 2310, pages 39–43, Toulouse, France, June 2018.
CEUR-WS.org.

[8] Guillaume Savaton. Truth Tables to Binary Decision Diagrams, ATL Transfor-
mations. https://www.eclipse.org/atl/atlTransformations/#TT2BDD, February
2006. Last accessed on 2019-05-14. Archived on http://archive.is/HdoHM.

10

https://www.transformation-tool-contest.eu/2017/solutions_livecontest.html
https://www.transformation-tool-contest.eu/2017/solutions_livecontest.html
http://archive.is/gHEys
https://www.eclipse.org/atl/atlTransformations/#TT2BDD
http://archive.is/HdoHM

	Introduction
	Transformation Description
	Input Metamodel: Truth Tables
	Output Metamodel: Binary Decision Trees
	Process Outline

	Main Task
	Benchmark Framework
	Solution requirements
	Running the benchmark

	Evaluation

